Czasopismo
2021
|
Vol. 21, no. 1
|
617--631
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Tungsten borides (WBx; x = 2.5 or 4.5) with an increasing substitution of tungsten by zirconium from 0 to 24 at.% were synthesized by spark plasma sintering (SPS) for the first time. The influence of the holding time (2.5–30 min) on the densification behavior, microstructure evolution and development of the properties of W–Zr–B compounds were studied. The samples were characterized using scanning electron microscopy (SEM) for microstructure analysis, X-ray diffraction (XRD) for phase identification, Vickers micro-indentation for microhardness measurements, tribological tests to determine the coefficient of friction and specific wear rate, as well as measurements of electrical conductivity. The XRD results confirm the presence of the WB4 phase in the microstructure, despite the high sintering temperature (1800 °C) and small overstoichiometric excess of boron (4.5) addition in the sintered samples. This is caused by the high heating rate (400 °C/min), short holding time (2.5 min) and addition of zirconium. The Vickers hardness (HV) values measured at 1 N are 24.8 ± 2.0 and 26.6 ± 1.8 GPa for 24 at.% zirconium in WB2.5 and for 0 at.% zirconium in WB4.5, respectively. In addition, the hardest sample (W0.76Zr0.24B2.5) showed electrical conductivity up to 3.961·106 S/m, which is similar to WC–Co cemented carbides. The friction and wear test results reveal the formation of a boron-based film which seems to play the role of a solid lubricant.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
617--631
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
- Łukasiewicz Research Network – Metal Forming Institute, 14 Jana Pawla II St, 61-139 Poznan, Poland, dariusz.garbiec@inop.lukasiewicz.gov.pl
autor
- Łukasiewicz Research Network – Metal Forming Institute, 14 Jana Pawla II St, 61-139 Poznan, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawinskiego St, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawinskiego St, 02-106 Warsaw, Poland
- Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawinskiego St, 02-106 Warsaw, Poland
autor
- Łukasiewicz Research Network – Metal Forming Institute, 14 Jana Pawla II St, 61-139 Poznan, Poland
autor
- Łukasiewicz Research Network – Metal Forming Institute, 14 Jana Pawla II St, 61-139 Poznan, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawinskiego St, 02-106 Warsaw, Poland, tmosc@ippt.pan.pl
Bibliografia
- [1] Akopov G, Yeung MT, Kaner RB. Rediscovering the crystal chemistry of borides. Adv Mater. 2017;29(21):1604506. https://doi.org/10.1002/adma.201604506.
- [2] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature. 2001;410(6824):63–4. https://doi.org/10.1038/35065039.
- [3] Chung H-Y, Weinberger MB, Levine JB, Kavner A, Yang J-M, Tolbert SH, et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science. 2007;316(5823):436. https://doi.org/10.1126/science.1139322.
- [4] Silvestroni L, Kleebe H-J, Fahrenholtz WG, Watts J. Super-strong materials for temperatures exceeding 2000 °C. Sci Rep. 2017;7(1):40730. https://doi.org/10.1038/srep40730.
- [5] Chrzanowska-Gizynska J, Denis P, Hoffman J, Gizynski M, Moscicki T, Garbiec D, et al. Tungsten borides layers deposited by a nanosecond laser pulse. Surf Coat Technol. 2018;335:181–7. https://doi.org/10.1016/j.surfcoat.2017.12.040.
- [6] Ma K, Cao X, Yang H, Xue X. Formation of metastable tungsten tetraboride by reactive hot-pressing. Ceram Int. 2017;43(12):8551–5. https://doi.org/10.1016/j.ceramint.2017.03.059.
- [7] Gu Q, Krauss G, Steurer W. Transition metal borides: superhard versus ultra-incompressible. Adv Mater. 2008;20(19):3620–6. https://doi.org/10.1002/adma.200703025.
- [8] Akopov G, Yeung MT, Turner CL, Mohammadi R, Kaner RB. Extrinsic hardening of superhard tungsten tetraboride alloys with group 4 transition metals. J Am Chem Soc. 2016;138(17):5714–21. https://doi.org/10.1021/jacs.6b02676.
- [9] Ken H, Endo T, Masaki K, Nakane S, Nishimura T, Morisada Y, et al. Simultaneous synthesis and consolidation of W-added ZrB2 by pulsed electric current pressure sintering and their mechanical properties. Mater Sci Forum. 2007;561–565:527–30. https://doi.org/10.4028/www.scientific.net/MSF.561-565.527.
- [10] Silvestroni L, Sciti D, Monteverde F, Stricker K, Kleebe H-J. Microstructure evolution of a W-doped ZrB2 ceramic upon high-temperature oxidation. J Am Ceram Soc. 2017;100(4):1760–72. https://doi.org/10.1111/jace.14738.
- [11] Jiang Y, Li R, Zhang Y, Zhao B, Li J, Feng Z. Tungsten doped ZrB2 powder synthesized synergistically by co-precipitation and solid-state reaction methods. Procedia Eng. 2012;27:1679–85. https://doi.org/10.1016/j.proeng.2011.12.636.
- [12] Kislyi PS, Kuzenkova MA, Zaverukha OV. On the sintering process of zirconium diboride with tungsten. Phys Sinter. 1971;3:29–44.
- [13] Ordan’yan SS, Boldin AA, Suvorov SS, Smirnov VV. Phase diagram of the W2B5–ZrB2 system. Inorg Mater. 2005;41(3):232–4. https://doi.org/10.1007/s10789-005-0114-0.
- [14] Moscicki T, Psiuk R, Słomińska H, Levintant-Zayonts N, Garbiec D, Pisarek M, et al. Influence of overstoichiometric boron and titanium addition on the properties of RF magnetron sputtered tungsten borides. Surf Coat Technol. 2020;390:125689. https://doi.org/10.1016/j.surfcoat.2020.125689.
- [15] Chrzanowska-Giżyńska J, Denis P, Giżyński M, Kurpaska Ł, Mihailescu I, Ristoscu C, et al. Thin WBx and WyTi1–yBx films deposited by combined magnetron sputtering and pulsed laser deposition technique. Appl Surf Sci. 2019;478:505–13. https://doi.org/10.1016/j.apsusc.2019.02.006.
- [16] Garbiec D, Siwak P. Study on microstructure and mechanical properties of spark plasma sintered Alumix 431 powder. Pow-derMetall. 2016;59(4):242–8. https://doi.org/10.1080/00325899.2016.1169362.
- [17] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–83. https://doi.org/10.1557/JMR.1992.1564.
- [18] Lancaster JK. The influence of substrate hardness on the for-mation and endurance of molybdenum disulphide films. Wear. 1967;10(2):103–17. https://doi.org/10.1016/0043-1648(67)90082-8.
- [19] Habainy J, Nilsson C. Oxidation of pure tungsten in the tempera-ture interval 400–900 °C. Master’s Thesis. Lund University, Lund 2013.
- [20] Itoh H, Matsudaira T, Naka S, Hamamoto H, Obayashi M. Formation process of tungsten borides by solid state reaction between tungsten and amorphous boron. J Mater Sci. 1987;22(8):2811–5. https://doi.org/10.1007/BF01086475.
- [21] Li X, Tao Y, Peng F. Pressure and temperature induced phase transition in WB4: a first principles study. J Alloy Compd. 2016;687:579–85. https://doi.org/10.1016/j.jallcom.2016.06.146.
- [22] Gao Y, Gao K, Fan L, Yang F, Guo X, Zhang R, et al. Oscillatory pressure sintering of WC–Fe–Ni cemented carbides. Ceram Int. 2020;46(8, Part B):12727–31. https://doi.org/10.1016/j.ceramint.2020.02.040.
- [23] Bai L, Qi J, Lu Z, Zhang G, Wang L, Wang Y, et al. Theoretical study on tribological mechanism of solid lubricating films in a sand–dust environment. Tribol Lett. 2013;49(3):545–51. https://doi.org/10.1007/s11249-012-0095-5.
- [24] Espinosa-Fernández L, Borrell A, Salvador MD, Gutierrez-Gonzalez CF. Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear. 2013;307(1):60–7. https://doi.org/10.1016/j.wear.2013.08.003.
- [25] https://periodictable.com/Properties/A/ElectricalConductivity.an.html. Accessed 1 Oct 2020.
- [26] Guimarães B, Fernandes CM, Figueiredo D, Cerqueira MF, Car-valho O, Silva FS, et al. A novel approach to reduce in-service temperature in WC–Co cutting tools. Ceram Int. 2020;46(3):3002–8. https://doi.org/10.1016/j.ceramint.2019.09.299.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f39ad6ba-df56-438f-b825-3bf1108f182b