Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 2 | 441--457
Tytuł artykułu

Profit optimization for multi-mode repetitive construction project with cash flows using metaheuristics

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the profit optimization model for multi-unit construction projects. Such projects constitute a special case of repetitive projects and are common in residential, commercial, and industrial construction projects. Due to the specific character of construction works, schedules of such projects should take into account many different aspects, including durations and costs of construction works, the possibility of selecting alternative execution modes, and specific restrictions (e.g., deadlines for the completion of units imposed by the investor). To solve the NP-hard problem of choosing the order of units’ construction and the best variants of works, the authors used metaheuristic algorithms (simulated annealing and genetic search). The objective function in the presented optimization model was the total profit of the contractor determined on the basis of the mathematical programming model. This model takes into account monthly cash flows subject to direct and indirect costs, penalties for missing deadlines, costs of work group discontinuities, and borrowing losses. The presented problem is very important for maintaining a good financial condition of the enterprise carrying out construction projects. In the article, an experimental analysis of the proposed method of solving the optimization task was carried out in a model that showed high efficiency in obtaining suboptimal solutions. In addition, the operation of the proposed model has been presented on a calculation example. The results obtained in it are fully satisfying.
Wydawca

Rocznik
Strony
441--457
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
  • Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
  • Faculty of Civil Engineering, Warsaw University of Technology, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Control Systems and Mechatronics, Faculty of Electronics, Wroclaw University of Science and Technology, Janiszewskiego 11-17, 50-372 Wrocław, Poland
autor
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wroclaw, Poland, anna.burduk@pwr.edu.pl
  • Department of Telecommunications and Teleinformatics, Faculty of Electronics, Wroclaw University of Science and Technology, Janiszewskiego 11-17, 50-372 Wrocław, Poland
Bibliografia
  • [1] Zhou J, Love PE, Wang X, Teo KL, Irani Z. A review of methods and algorithms for optimizing construction scheduling. J Oper Res Soc. 2013. https:// doi. org/ 10. 1057/ jors. 2012. 174.
  • [2] Herreolen W. Project scheduling-theory and practice. Prod Oper Manag. 2005. https:// doi. org/ 10. 1111/j. 1937- 5956. 2005. tb002 30.x.
  • [3] Węglarz J, et al. Project scheduling-recent models, algorithms and applications. Springer; 2012.
  • [4] Kolisch R, Padman R. An integrated survey of deterministic project scheduling. Omega. 2001. https:// doi. org/ 10. 1016/ S0305- 0483(00) 00046-3.
  • [5] Herroelen W, De Reyck B, Demeulemeester E. Resource-constrained project scheduling: a survey of recent developments. Comput Oper Res. 1998. https:// doi. org/ 10. 1016/ S0305- 0548(97) 00055-5.
  • [6] Brucker P, Drexl A, Mohring R, Neumann K, Pesch E. Resource-constrained project scheduling: Notation, classification, models, and methods. Eur J Oper Res. 1999. https:// doi. org/ 10. 1016/ S0377- 2217(98) 00204-5.
  • [7] Habibi F, Barzinpour F, Sadjadi S. Resource-constrained project scheduling problem: review of past and recent developments. J Proj Manag. 2018. https:// doi. org/ 10. 5267/j. jpm. 2018.1. 005.
  • [8] Van Peteghem V, Vanhoucke M. A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Eur J Oper Res. 2010. https:// doi. org/ 10. 1016/j. ejor. 2009. 03. 034.
  • [9] Rosłon J. The multi-mode, resource-constrained project scheduling problem in construction: state of art review and research challenges. Tech Trans. 2017. https:// doi. org/ 10. 4467/ 23537 37XCT. 17. 070. 6427.
  • [10] Senouci AB, Eldin NN. Use of genetic algorithms in resource scheduling of construction projects. J Constr Eng Manag. 2004. https:// doi. org/ 10. 1061/ (ASCE) 0733- 9364(2004) 130: 6(869).
  • [11] Mika M, Waligóra G, Węglarz J. Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. Eur J Oper Res. 2005. https:// doi. org/ 10. 1016/j. ejor. 2003. 10. 053.
  • [12] Tiwari V, Patterson JH, Mabert VA. Scheduling projects with heterogeneous resources to meet time and quality objectives. Eur J Oper Res. 2009. https:// doi. org/ 10. 1016/j. ejor. 2007. 11. 005.
  • [13] Ghoddousi P, Eshtehardian E, Jooybanpour S, Javanmardi A. Multi-mode resource-constrained discrete time–cost-resource optimization in project scheduling using non-dominated sorting genetic algorithm. Autom Constr. 2013. https:// doi. org/ 10. 1016/j. autcon. 2012. 11. 014.
  • [14] Geiger MJ. A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multiproject scheduling problem. Eur J Oper Res. 2017. https:// doi. org/ 10. 1016/j. ejor. 2016. 07. 024.
  • [15] Rosłon J, Kulejewski J. A hybrid approach for solving multi-mode resource-constrained project scheduling problem in construction. Open Engineering. 2019. https:// doi. org/ 10. 1515/ eng- 2019- 0006.
  • [16] Deblaere F, Demeulemeester E, Herroelen W. Reactive scheduling in the multi-mode RCPSP. Comput Oper Res. 2011. https:// doi. org/ 10. 1016/j. cor. 2010. 01. 001.
  • [17] Chen A, Liang YC, Padilla J. An entropy-based upper bound methodology for robust predictive multi-mode RCPSP schedules. Entropy. 2014. https:// doi. org/ 10. 3390/ e1609 5032.
  • [18] Liao TW, Egbelu PJ, Sarker BR, Leu SS. Metaheuristics for project and construction management-a state-of-the-art review. Autom Constr. 2011. https:// doi. org/ 10. 1016/j. autcon. 2010. 12. 006.
  • [19] Mika M, Waligóra G, Węglarz J. Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times. Eur J Oper Res. 2008. https:// doi. org/ 10. 1016/j. ejor. 2006. 06. 069.
  • [20] Jarboui B, Damak N, Siarry P, Rebai A. A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Appl Math Comp. 2008;195:299–308.
  • [21] Li H, Zhang H. Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Autom Constr. 2013. https:// doi. org/ 10. 1016/j. autcon. 2013. 05. 030.
  • [22] Sebt MH, Afshar MR, Alipouri YJEO. Hybridization of genetic algorithm and fully informed particle swarm for solving the multi-mode resource-constrained project scheduling problem. Eng Optim. 2017. https:// doi. org/ 10. 1080/ 03052 15X. 2016. 11976 10.
  • [23] Zhang L, Luo Y, Zhang Y. Hybrid particle swarm and differential evolution algorithm for solving multimode resource-constrained project scheduling problem. J Control Sci Eng. 2015. https:// doi. org/ 10. 1155/ 2015/ 923791.
  • [24] Özdamar L, Dündar H. A flexible heuristic for a multi-mode capital constrained project scheduling problem with probabilistic cash inflows. Comput Oper Res. 1997. https:// doi. org/ 10. 1016/ S0305- 0548(96) 00058-5.
  • [25] Chen PH, Weng H. A two-phase GA model for resource-constrained project scheduling. Autom Constr. 2009. https:// doi. org/ 10. 1016/j. autcon. 2008. 11. 003.
  • [26] Zhang Z, Xu J. A multi-mode resource-constrained project scheduling model with bi-random coefficients for drilling grouting construction project. Int J Civ Eng. 2013. https:// doi. org/ 10. 3934/ jimo. 2016. 12. 565.
  • [27] Xu J, Feng C. Multimode resource-constrained multiple project scheduling problem under fuzzy random environment and its application to a large scale hydropower construction project. Sci World J. 2014. https:// doi. org/ 10. 1155/ 2014/ 463692.
  • [28] Hegazy T, Wassef N. Cost optimization in projects with repetitive nonserial activities. J Constr Eng Manag. 2001. https:// doi. org/ 10. 1061/ (ASCE) 0733- 9364(2001) 127: 3(183).
  • [29] Hegazy T, Elhakeem A, Elbeltagi E. Distributed scheduling model for infrastructure networks. J Constr Eng Manag. 2004. https:// doi. org/ 10. 1061/ (ASCE) 0733- 9364(2004) 130: 2(160).
  • [30] Zhang H, Li H, Tam CM. Heuristic scheduling of resource constrained, multiple mode and repetitive projects. Constr Manag Econ. 2006. https:// doi. org/ 10. 1080/ 01446 19050 01843 11.
  • [31] Zhang L, Zou X. Repetitive project scheduling theory and methods. 1st ed. Elsevier; 2015.
  • [32] Gupta J, Stafford EF Jr. Flowshop scheduling research after five decades. Eur J Oper Res. 2006. https:// doi. org/ 10. 1016/j. ejor. 2005. 02. 001.
  • [33] Bożejko W, Hejducki Z, Wodecki M. Applying metaheuristic strategies in construction projects management. J Civ Eng Manag. 2012. https:// doi. org/ 10. 3846/ 13923 730. 2012. 719837.
  • [34] Bożejko W, Hejducki Z, Uchroński M, Wodecki M. Solving resource-constrained construction scheduling problems with overlaps by metaheuristic. J Civ Eng Manag. 2014. https:// doi. org/ 10. 3846/ 13923 730. 2014. 906496.
  • [35] Bożejko W, Hejducki Z, Wodecki M. Flowshop scheduling of construction processes with uncertain parameters. Arch Civ Mech Eng. 2019. https:// doi. org/ 10. 1016/j. acme. 2018. 09. 010.
  • [36] Podolski M. Management of resources in multiunit construction projects with the use of a tabu search algorithm. J Civ Eng Manag. 2017. https:// doi. org/ 10. 3846/ 13923 730. 2015. 10736 16.
  • [37] Podolski M, Sroka B. Cost optimization of multiunit construction projects using linear programming and metaheuristic-based simulated annealing algorithm. J Civ Eng Manag. 2019. https:// doi. org/ 10. 3846/ jcem. 2019. 11308.
  • [38] Zawistowski J, Kulejewski J. Influence of the contractor’s payment method on the economic effectiveness of the construction project from the contractor’s point of view. Open Eng. 2018. https:// doi. org/ 10. 1515/ eng- 2018- 0055.
  • [39] Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG. Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. In: Proceedings of the advanced research institute on discrete optimization and systems applications of the systems science panel of NATO and of the Discrete Optimization Symposium. Elsevier. 1979.
  • [40] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983. https:// doi. org/ 10. 1126/ scien ce. 220. 4598. 671.
  • [41] Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press; 1992.
  • [42] Goldberg D. Genetic algorithms in search, optimization and machine learning. Addison Wesley; 1989.
  • [43] Reeves CR. A genetic algorithm for flowshop sequencing. Comp Oper Res. 1995. https:// doi. org/ 10. 1016/ 0305- 0548(93) E0014-K.
  • [44] Karnopp DC. Random search techniques for optimization problems. Automatica. 1963. https:// doi. org/ 10. 1016/ 0005- 1098(63) 90018-9.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f3477b9b-0f8e-4b75-ba94-b9bdb856679a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.