Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 20, nr 2 | 145--154
Tytuł artykułu

Existence results for the Dirichlet problem of some degenerate nonlinear elliptic equations

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated to the degenerate nonlinear elliptic equations − ∑nj=1Dj[v2(x)Aj(x,u,∇u)]+∑nj=1bj(x)v1(x)Dju(x)+αg(x)v3(x)u(x)=f0(x)− ∑nj=1=1Djfj(x) on Ω in the setting of the weighted Sobolev spaces W1,20(Ω,v1,v2).
Wydawca

Rocznik
Strony
145--154
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
  • Department of Mathematics, State University of Londrina, Londrina - PR - Brazil, 86057-970, accava@gmail.com
Bibliografia
  • [1] E. Fabes, D. Jerison and C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), 151-182.
  • [2] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116.
  • [3] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: A geometrical approach, Ann. Sc. Norm. Super. Pisa CI. Sci. (4) 14 (1987), 527-568.
  • [4] S. Fučik, 0. John and A. Kufner, Function Spaces, Noordhoff International Publishing, Leyden, 1977.
  • [5] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985.
  • [6] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monogr., Clarendon Press, Oxford, 1993.
  • [7] A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, Chichester, 1985.
  • [8] A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin. 25 (1984), 537-554.
  • [9] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
  • [10] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986.
  • [11] B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Math. 1736, Springer-Verlag, Berlin, 2000.
  • [12] E. Zeidler, Nonlinear Functional Analysis and its Applications. Volume I: Fixed-Point Theorems, Springer-Verlag, New York, 1990.
  • [13] E. Zeidler, Nonlinear Functional Analysis and its Applications. Volume II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f32fb4f9-0608-491a-ad7c-df688876be74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.