Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 44, no 4 | 285--316
Tytuł artykułu

On a Carnot working continuum with non-equilibrium state parameters

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We explain that a full description of how the non-equilibrium state of the system evolves in time requires the consideration and solution of its general equation of motion. In the case of the Carnot medium, as a general equation of motion, there must be taken two balances of: nonequilibrium specific volume and non-equilibrium specific entropy. Instead of taking the classical approach where the balance of entropy is postponed to more advanced and theoretical treatments, we focus on the analysis of two, most general, volume and entropy fluxes. These fluxes of motion are universal features of thermodynamics. It has been shown that the Carnot working continuum mathematical model is captured by the two general nonmathematical statements valid for all systems that we call the first law and the second law of thermodynamics.
Wydawca

Rocznik
Strony
285--316
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • University of Warmia and Masury, Faculty of Technical Sciences, Oczapowskiego 11, 10-719 Olsztyn, Poland, tomasz.ochrymiuk@imp.gda.pl
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Carnot S.: Réflexions sur la puissance motrice du feu, Pairs: Bachelier 1824, (critical edition by R. Fox, Vrin, Paris, 1978).
  • [2] Carnot L.: Essai sur les machines en général, Dijon: Defay 1783 (Ital. transl. and critical edition by S.D. Manno and A. Drago, Naples: CUEN 1994).
  • [3] Ochrymiuk T., Banaszkiewicz M., Lemański M., Kowalczyk T., Ziółkowski P., Ziółkowski P.J., Hyrzyński R., Stajnke M., Bryk M., Kraszewski B., KrukGotzman S., Froissart M., Badur J.: Fluid solid interactions – a novelty in industrial applications. Arch. Thermodyn. 43(2022), 2, 75–96.
  • [4] Ochrymiuk T., Dudda W., Froissart M., Badur J.: Principles of stress-strength modelling of the highly loaded materials – the influence of an effect of strength differential on the material effort. Materials (Basel) 14(2021), 23, 7449. doi: 10.3390/ma14237449
  • [5] Dudda W.: Problems of Thermal Effort of a Heat-Resistant Naterial. Wyd. UWM, Olsztyn 2021.
  • [6] Gyftopoulos E.P., Beretta G.P.: Thermodynamics, Foundations and Applications (2nd Edn.). Dover, Mineola New York 2005.
  • [7] Kjelstrup S., Bedeaux D.: Non-equilibrium Thermodynamics of Heterogeneous Systems, Word Sci., Singapore 2008.
  • [8] Feidt M.: Thermodynamique et optimization énergétique das systems et procédés. Technique et Documentation, Paris, 1987 (in French).
  • [9] Zanchini E., Beretta G.P.: Removing heat and conceptual loops from the definition of entropy. Int. J. Thermodyn. 13(2010), 67–76.
  • [10] Beretta G.P., Gyftopoulos E.P.: A novel sequence of exposition of engineering thermodynamics. J. Energ. Res. Technol. 137(2015), 021009-1. doi: 10.1115/1.4026385
  • [11] Natanson W.: On the laws of viscosity. Phil. Mag. 2(1901), 342–356.
  • [12] Maldenstam L., Leontonovich M.: A theory of sound absorption in liquids. J. Exp. Theor. Phys. 7(1937), 438–449.
  • [13] Szaniawski A.: Relaxation phenomena in flow problems. Arch. Mech. 10(1958), 671–698.
  • [14] Meixner J.: TIP has many faces. In: Irreversible aspects of continuum mechanics (H. Parkus, L. Sedov, Eds.). Springer Verlag 1968, 237–249.
  • [15] Kestin J.: Local-equilibrium formalism applied to mechanics of solids. Int. J. Solids Struct. 29(1992), 1827–1836.
  • [16] Brey J.J., Santos A.: Non-equilibrium entropy of a gas. Phys. Rev. A, 45(1992),8566–8572.
  • [17] Sieniutycz S.: Conservation Laws in Variational Thermo-Hydrodynamics. Kluwer Academic, Dordrecht 1994
  • [18] Bilicki Z., Kestin J.: Physical aspects of the relaxation model in two-phase flow. Proc. Royal. Soc. London A 428(1990), 379–397.
  • [19] Bilicki Z., Badur J.: A thermodynamically consistent relaxation model for turbulent binary mixture undergoing phase transition. J. Non-Equil. Thermodyn. 28(2003),145–172.
  • [20] Badur J., Nastałek L.: Thermodynamics of thermo-deformable solids. In: Encyclopaedia of Thermal Stresses (1st Edn.), (R. Hetnarski, Ed.). Springer Verlag, Dordrecht, 2014.
  • [21] Badur J., Ochrymiuk, T., Kowalczyk, T., Dudda, W., Ziółkowski P.: From fluid mechanics backgrounds to modern field theory. Acta Mech. 233(2022), 8, 3453–3465.
  • [22] Gaggioli R.A.: Principles of thermodynamics. In: Thermodynamics: Second Law Analysis (R.A. Gaggioli, Ed.); Washington, Washington DC 1980, 1–13.
  • 23] Fülöp T., Ván P., Csatár A.: Elasticity, plasticity, rheology and thermal stress – an irreversible thermodynamical theory. In: Proc. 12th Joint European Thermodynamics Conf., JETC 2013 (M. Pilotelli, G.P. Beretta, Eds.), Brescia, July 1-5, 2013. Snoopy, Brescia 2013, 525–530.
  • [24] Grmela M., Öttinger H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. 56(1997), 6620–6632.
  • [25] von Spakovsky M.R.: Intrinsic quantum thermodynamic; what it is and what can be done with it. In: Proc. 12th Joint European Thermodynamics Conf., JETC 2013 (M. Pilotelli, G.P. Beretta, Eds.), Brescia, July 1-5, 2013. Snoopy, Brescia 2013, 359–369.
  • [26] Palazzo P.: Proposal for generalized exergy and entropy properties based on stable equilibrium of composed system-reservoir. J. Mod. Phys. 4(2013), 52–58.
  • [27] Ván P.: Weakly non-local irreversible thermodynamics – The Guyer-Krumhal and the Chan-Hillard equations. Phys. Lett. A 290(2001), 88–91.
  • [28] Lebon G., Jou D., Casas-Vázques J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin 2008.
  • [29] Bejan A.: Entropy Generation Through Heat and Fluid Flow. Wiley, New York 1982.
  • [30] Mieczyński M.: The Essence of Symmetry in Classical and Contemporary Thermodynamics. Oficyna PW, Wrocław 2002 (in Polish).
  • [31] Born M.: Kritische Betrachtungen zur traditionellen Darstellung der Thermodynanik. Phys. Zeitschr. 22(1921), 210–230.
  • [32] Bridgeman P.W.: The Logic of Modern Physics. Willey, New York 1960.
  • [33] Kestin J.: Thermodynamics (An essay). In: Fluid-Flow Machinery Problems (Z. Bilicki, at al. Ed.), 319–252, Wydawn. IMP PAN, Gdańsk 1993.
  • [34] Eglit M.E.: Generalization of the model of an ideal compressible fluid. PMM 32(1965), 771–785.
  • [35] Badur J., Banaszkiewicz M.: Model of the ideal fluid with scalar microstructure, An application to flashing flow of water. Trans. Inst. Fluid-Flow Mach. 105(1999),115–152.
  • [36] Lebon G., Casas-Vazquez J., Jou D.: On the definition of non-equilibrium. J. Phys. A: Math. Gen. 15(1982), 565–584.
  • [37] Casas-Vázquez J., Jou D.: Temperature in non-equilibrium states: a review of open problems and current proposals. Rep. Prog. Phys. 66(2003), 1937–2023.
  • [38] Beretta G.P.: Steepest entropy ascent model for far-non-equilibrium thermodynamics. Unified implementation of the maximum entropy production principle. Phys. Rev. E 90(2014), 042113.
  • [39] Ván P. 2020 Non-equilibrium thermodynamics: emergent and fundamental. Phil. Trans. R. Soc. A 378, 20200066. doi: 10.1098/rsta.2020.006
  • [40] Lucia U., Grisolia G.: Non-equilibrium temperature: An approach from irreversibility. Materials (Basel) 14(2021), 8, 2004. doi: 10.3390/ma14082004
  • [41] Gujrati P.D.: Generalized non-equilibrium heat and work and the fate of the Clausius inequality. UATP 1103(2011), 1–4.
  • [42] Badur J.: Evolution of the Energy Notion. Wydawn. IMP PAN, Gdańsk 2009
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f31f258a-1237-4c81-a30f-14e512ef4abb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.