Czasopismo
2017
|
Vol. 46, No. 2
|
223--230
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Due to the limited water exchange, lagoons are particularly prone to eutrophication. The consumption of oxygen in this process, coupled with simultaneous enrichment of bottom sediments with organic matter, reinforces the occurrence of anaerobic conditions and methanogenic growth. Methanogenic archaea activities cause depolymerization of organic compounds accumulated in sediments. As a result of such ecosystem transformation, methane might be produced and emitted from this basin. Chemical studies conducted in 2010 were focused on methane content in the surface bottom sediments in the Polish part of the Vistula Lagoon. The results showed that the highest methane concentration occurs in the southwestern part of this basin (6.45 mmol dm-3), while the lowest one in the southeastern part (7.1 × 10-3 mmol dm-3). Molecular studies were focused on specific methanogenic archaea gene identification. The comparison of nucleotide sequences of “mcrA gene” clones obtained from genomic DNA isolated from the Vistula Lagoon sediments indicates a similarity to the yet uncultivated archaea, but also to archaea from the Methanosarcinales and Methanomicrobiales orders.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
223--230
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland, andrzej.reindl@ug.edu.pl
autor
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
Bibliografia
- [1]. Amouroux, D., Roberts, G., Rapsomanikis, S. & Andreae, M.O. (2002). Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from near shore and shelf waters of the north western Black Sea. Estuar. Coast. Shelf Sci. 54: 575-587. DOI:10.1006/ecss.2000.0666.
- [2]. Bange, H.W. (2006). Nitrous oxide and methane in European coastal waters. Estuar. Coast. Shel. Sci. 70: 361-374, DOI:10.1016/j.ecss.2006.05.042.
- [3]. Bange, H.W., Bartell, U.H., Rapsomanikis, S. & Andreae, M.O. (1994). Methane in Baltic and North Seas and a reassessment of the marine emissions of methane. Glob. Biochem. Cyc. 8: 465-480.
- [4]. Brodecka, A. & Bolałek, J. (2011). Czynniki geochemiczne warunkujące występowanie metanu w osadach Zatoki Gdańskiej. In J. Drzymała & W. Ciężkowski (Ed.), Interdyscyplinarne zagadnienia w górnictwie i geologii (pp. 73-83). Ofic. Wyd. PWr. Wrocław.
- [5]. Brodecka, A., Majewski, P., Bolałek, J. & Klusek, Z. (2013). Geochemical and acoustic evidence for the occurrence of methane in sediments of the Polish sector of the southern Baltic Sea. Oceanologia 55(4): 951-978.
- [6]. Dębowski, M., Zieliński, M., Dudek, M. & Grala, A. (2016). Acquisition feasibility and methane fermentation effectiveness of biomass of microalgae occurring in eutrophicated aquifers on the example of the Vistula Lagoon. International Journal of Green Energy 13(4): 395-407.
- [7]. Edlund, A. (2007). Microbial diversity in Baltic Sea sediment. Unpublished doctoral dissertation, Swedish University of Agricultural Science, Uppsala.
- [8]. Elmquist, M., Gustafsson, O. & Andersson, P. (2004). Quantification of sedimentary black carbon using the chemothermal oxidation method: an evaluation of ex situ pre-treatments and standard additions approaches. Limnology and Oceanography: Methods 2(12): 417-427.
- [9]. Grala, A., Zieliński, M. Dębowski, M. & Dudek, M. (2012). Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process. Polish Journal of Environmental Studies 21(2): 361-366.
- [10]. Hedges, J.I. & Stern, J.H. (1984). Carbon and nitrogen determinations of carbonate-containing solids. Limnology and Oceanography 29(3): 657-663.
- [11]. Innis, M.A. & Gelfand, D.H. (1990). Optimization of PCRs. In M.A. Innis, D.H. Gelfand, J.J. Sninisky, & T.J. White (Eds.), PCR Protocols: a Guide to Methods and Applications (pp. 3-12). Academic Press, San Diego, CA.
- [12]. Jensen, J.B. & Fossing, H. (2005). Methane in the seabed sediments of the south-western Baltic Sea. Geoph. Res. Abstr. 7: 04438.
- [13]. Jørgensen, B.B., Bang, M. & Blackburn, T.H. (1990). Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Marine Ecology Progress Series 59: 39-54.
- [14]. Kruk, M. (2011). Zalew Wiślany pomiędzy lądem a morzem. Kłopotliwe konsekwencje. In M. Kruk, A. Rychter & M. Mróz (Eds.), Zalew Wiślany. Środowisko przyrodnicze oraz nowoczesne metody jego badania na przykładzie projektu VISLA (pp. 21-50). Wydawnictwo Państwowej Wyższej Szkoły Zawodowej w Elblągu.
- [15]. Liikanen, A., Silvennoinen, H., Karvo, A., Rantakokko, P. & Martikainen, P.J. (2009). Methane and nitrous oxide fluxes in two coastal wetlands in the northeastern Gulf of Bothnia, Baltic Sea. Boreal Env. Res. 14: 351-368.
- [16]. Luton, P.E., Wayne, J.M., Sharp, R.J & Riley, P.W. (2002). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol. 148: 3521-3530.
- [17]. Mori, K., Yamamoto, H., Kamagata, Y., Hatsu, M. & Takamizawa, K. (2000). Methanocalculus pumilus sp. nov., a heavymetal-tolerant methanogen isolated from a waste-disposal site. Int. J. Syst. Evolut. Microb. 50: 1723-1729.
- [18]. Nawrocka, L., Kobos, J., Gotkowska-Płachtam, A., Drzewicki, A. & Rodziewicz, W. (2011). Rośliny, glony i bakterie Zalewu Wiślanego In M. Kruk, A. Rychter & M. Mróz (Eds.), Zalew Wiślany. Środowisko przyrodnicze oraz nowoczesne metody jego badania na przykładzie projektu VISLA (pp. 51-66). Wydawnictwo Państwowej Wyższej Szkoły Zawodowej w Elblągu.
- [19]. Nieczaj, I.J., Silicz, M.W. & Jabłońska, T. (1975). Hydrografia zlewiska zalewu. In N.N. Łazarienko & A. Majewski (Eds.), Hydrometeorologiczny ustrój Zalewu Wiślanego (pp. 21-28). IMGW, Wydawnictwa Komunikacji i Łączności, Warszawa.
- [20]. Nunoura, T., Oida, H., Miyazaki, J., Miyashita, A., Imachi, H. et al. (2008). Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. Microbiol. Ecology 64: 240-247. DOI: 10.1111/j.1574-6941.2008.00451.x.
- [21]. Pimenov, N.V., Ul’yanova, M.O., Kanapatskii, T.A., Mitskevich, L.N., Rusanov, I.I. et al. (2013). Sulfate reduction, methanogenesis, and methane oxidation in the upper sediments of the Vistula and Curonian Lagoons, Baltic Sea. Microbiol. 82(2): 224-233.
- [22]. Reeburgh, W.S. & Heggie, D.T. (1977). Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments. Limnol. Oceanogr. 22(1): 1-9.
- [23]. Reindl, A.R. & Bolałek, J. (2012a). Methane flux from sediment into near-bottom water in the coastal area of the Puck Bay (southern Baltic Sea). Oceanol. Hydrobiol. St. 41: 33-39.
- [24]. Reindl, A.R. & Bolałek, J. (2012b). Methanogenic community in the sediment from coastal area of Puck Bay (southern Baltic Sea). Ocean. and Hydrob. Stud., 41(3): 40-47. DOI: 10.2478/s13545-012-0025-z.
- [25]. Reindl, A.R. & Bolałek, J. (2014). Methane flux from sediment into near-bottom water and its variability along the Hel Peninsula – Southern Baltic Sea. Cont. Shelf Res. 74: 88-93.
- [26]. Saitou, N. & Nei, M. (1987). The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 4: 406-425.
- [27]. Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989). Molecular cloning: a laboratory manual. 2. ed. Cold Spring Harbor Laboratory Press, New York, 253 pp.
- [28]. Sołowiew, I.I. (1975). Charakterystyka morfometryczna zalewu i jego linia brzegowa. In N.N. Łazarienko & A. Majewski (Eds.), Hydrometeorologiczny ustrój Zalewu Wiślanego (pp. 18-21). IMGW, Wydawnictwa Komunikacji i Łączności, Warszawa.
- [29]. Steinberg, L.M. & Regan, J.M. (2009). mcrA-Targeted Real-Time Quantitative PCR Method to Examine Methanogen Communities. Appl. Environ. Microbiol. 75: 4435-4442.
- [30]. Trzosińska, A. & Żurawlewa, R.A. (1975). Ustrój gazowy wód Zalewu Wiślanego. In N.N. Łazarienko & A. Majewski (Eds.), Hydrometeorologiczny ustrój Zalewu Wiślanego (pp. 405-429). IMGW, Wydawnictwa Komunikacji i Łączności, Warszawa.
- [31]. Ulyanova, M., Sivkov, V., Kanapatskij, T. & Pimenov, N. (2014). Seasonal variations in methane concentrations and diffusive fluxes in the Curonian and Vistula lagoons, Baltic Sea. Geo-Marine Letters 34(2-3): 231-240.
- [32]. Witek, Z., Zalewski, M. & Wielgat-Rychert, M. (2010). Nutrient stocks and fluxes in the Vistula Lagoon at the end of the twentieth century. Wydawnictwa Naukowego Akademii Pomorskiej w Słupsku, Słupsk-Gdynia, pp. 186.
- [33]. Wypych, K., Nieczaj, I.J., Sołowiew, I.I. & Jaworska M. (1975). Ukształtowanie dna i osady denne zalewu. In N.N. Łazarienko & A. Majewski (Eds.), Hydrometeorologiczny ustrój Zalewu Wiślanego (pp. 41-57). IMGW, Wydawnictwa Komunikacji i Łączności, Warszawa.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f2e97164-2136-4341-aeb1-b4ceb557b159