Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes a novel gait rehabilitation analysis system, based on an innovative multimodal vision-based sensor setup, focused on detecting gait pattern changes over time. The proposed setup is based on inexpensive technologies, without compromising performance, and was designed to be deployed on walkers, which are a typical assistive aid used in gait rehabilitation. In the medical field the evaluation of a patient's rehabilitation progress is typically performed by a medical professional through subjective techniques based on the professional's visual perception and experience. In this context, we are proposing an automatic system to detect the progress of patients undergoing rehabilitation therapy. Our approach is able to perform novelty detection for gait pattern classification based on One- Class Support Vector Machines (OC-SVM). Using point-cloud and RGB-D data, we detect the lower limbs (waist, legs and feet) by using Weighted Kernel-Density Estimation and Weighted Least-Squares to segment the legs into several parts (thighs and shins), and by fitting 3D ellipsoids to model them. Feet are detected using k-means clustering and a Circular Hough Transform. A temporal analysis of the feet's depth is also performed to detect heel strike events. Spatiotemporal and kinematic features are extracted from the lower limbs' model and fed to a classifier based on the fusion of several OC-SVMs. Experiments with volunteers using the robotic walker platform ISR-AIWALKER, where the proposed system was deployed, revealed a lower limbs tracking accuracy of 38 and that our novelty detection approach successfully identified novel gait patterns, evidencing an overall 97.89% sensitivity.
Czasopismo
Rocznik
Tom
Strony
701--717
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Pinhal de Marrocos – Polo II, 3030 Coimbra, Portugal, jpaulo@isr.uc.pt
autor
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Portugal
autor
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Portugal
autor
- Rehabilitation Medicine Center of the Centro Region (CMRRC) – Rovisco Pais, Coimbra, Portugal
Bibliografia
- [1] Harper S. Ageing societies. Routledge; 2014.
- [2] WHO. Rehabilitation in health systems. WHO; 2017.
- [3] Baker R. Gait analysis methods in rehabilitation. J NeuroEng Rehabil 2006;3.
- [4] Cappozzo A, Della Croce U, Leardini A, Chiari L. Human movement analysis using stereophotogrammetry: Part 1: theoretical background. Gait Posture 2005;21: 186–96.
- [5] Sigal L, Balan AO, Black MJ. Humaneva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int J Comput Vis 2010;87:4–27.
- [6] Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014;14:3362–94.
- [7] Derawi MO, Ali H, Cheikh FA. Gait recognition using time-of-flight sensor. BIOSIG; 2011. p. 187–94.
- [8] Liu H, Cao Y, Wang Z. Automatic gait recognition from a distance. Control Decis. Conf. CCDC 2010 Chin.; 2010. pp. 2777–82.
- [9] Gabel M, Gilad-Bachrach R, Renshaw E, Schuster A. Full body gait analysis with Kinect. Eng. Med. Biol. Soc. EMBC 2012 Annu. Int. Conf. IEEE; 2012. pp. 1964–7.
- [10] Sant'Anna A, Wickström N, Eklund H, Zügner R, Tranberg R. Assessment of gait symmetry and gait normality using inertial sensors: in-lab and in-situ evaluation. Biomed. Eng. Syst. Technol.. Springer; 2012. p. 239–54.
- [11] Wang T, Merlet J-P, Sacco G, Robert P, Turpin J-M, Teboul B, et al. Walking analysis of young and elderly people by using an intelligent walker ANG. Robot Auton Syst 2016; 75:96–106.
- [12] Lim CD, Wang C-M, Cheng C-Y, Chao Y, Tseng S-H, Fu L-C. Sensory cues guided rehabilitation robotic walker realized by depth image-based gait analysis. Autom Sic Eng IEEE Trans 2016;13:171–80.
- [13] Page S, Martins MM, Saint-Bauzel L, Santos CP, Pasqui V. Fast embedded feet pose estimation based on a depth camera for smart walker. Robot. Autom. ICRA 2015 IEEE Int. Conf. On, IEEE. 2015. pp. 4224–9.
- [14] Mezghani N, Husse S, Boivin K, Turcot K, Aissaoui R, Hagemeister N, et al. Automatic classification of asymptomatic and osteoarthritis knee gait patterns using kinematic data features and the nearest neighbor classifier. Biomed Eng IEEE Trans 2008;55:1230–2.
- [15] Djuric-Jovicic MD, Jovicic NS, Radovanovic SM, Stankovic ID, Popovic MB, Kostic VS. Automatic identification and classification of freezing of gait episodes in Parkinson's disease patients. Neural Syst Rehabil Eng IEEE Trans 2014;22:685–94.
- [16] Cola G, Avvenuti M, Vecchio A, Yang G-Z, Lo B. An on-node processing approach for anomaly detection in gait. Sens J IEEE 2015;15:6640–9.
- [17] Perry J, Davids JR, K ST. Gait analysis: normal and pathological function. J Pediatr Orthop 1992;12:815.
- [18] Öberg T, Karsznia A, Öberg K. Basic gait parameters: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev 1993;30:210.
- [19] Oberg T, Karsznia A, Oberg K. Joint angle parameters in gait: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev 1994;31:199–213.
- [20] Melis EH, Torres-Moreno R, Barbeau H, Lemaire ED. Analysis of assisted-gait characteristics in persons with incomplete spinal cord injury. Spinal Cord 1999;37:430–9.
- [21] Bouguet J-Y. Camera calibration toolbox for matlab; 2004, ftp://meria.idc.ac.il/Pub/Users/cs/yael/TMP/Calib4/ TOOLBOX_calib/TOOLBOX_calib/README.txt [accessed 24.12.15].
- [22] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 2002;47:7–42.
- [23] Lloyd SP. Least squares quantization in PCM. Inf Theory IEEE Trans 1982;28:129–37.
- [24] Yuen HK, Princen J, Illingworth J, Kittler J. Comparative study of Hough transform methods for circle finding. Image Vis Comput 1990;8:71–7.
- [25] Bishop CM. Novelty detection and neural network validation. Vis. Image Signal Process. IEE Proc.-, IET. 1994. pp. 217–22.
- [26] Pimentel MA, Clifton DA, Clifton L, Tarassenko L. A review of novelty detection. Signal Process 2014;99:215–49.
- [27] Solberg HE, Lahti A. Detection of outliers in reference distributions: performance of Horn's algorithm. Clin Chem 2005;51:2326–32.
- [28] Angiulli F, Pizzuti C. Fast outlier detection in high dimensional spaces. Eur. Conf. Princ. Data Min. Knowl. Discov.. Springer; 2002. p. 15–27.
- [29] Diaz I, Hollmén J. Residual generation and visualization for understanding novel process conditions. Neural Netw. 2002 IJCNN02 Proc. 2002 Int. Jt. Conf. On, IEEE. 2002. pp. 2070–5.
- [30] Tax DM, Duin RP. Support vector domain description. Pattern Recognit Lett 1999;20:1191–9.
- [31] Clifton L, Clifton DA, Watkinson PJ, Tarassenko L. Identification of patient deterioration in vital-sign data using one-class support vector machines. Comput. Sci. Inf Syst. FedCSIS 2011 Fed. Conf. On, IEEE. 2011. pp. 125–31. http://ieeexplore.ieee.org/xpls/abs_all.jsp? arnumber=6078208 [accessed 29.11.16].
- [32] Gardner AB, Krieger AM, Vachtsevanos G, Litt B. One-class novelty detection for seizure analysis from intracranial EEG. J Mach Learn Res 2006;7:1025–44.
- [33] Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC. Support vector method for novelty detection. Citeseer: NIPS; 1999. p. 582–8.
- [34] Vapnik V. Pattern recognition using generalized portrait method. Autom Remote Control 1963;24:774–80.
- [35] Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. Proc. Fifth Annu. Workshop Comput. Learn. Theory, ACM. 1992. pp. 144–52.
- [36] Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating the support of a high-dimensional distribution. Neural Comput 2001;13:1443–71.
- [37] Müller M. Dynamic time warping. Inf Retr Music Motion 2007;69–84.
- [38] Wu L, Oviatt SL, Cohen PR. Multimodal integration-a statistical view. Multimed IEEE Trans 1999;1:334–41.
- [39] Paulo J, Peixoto P. Classification of reaching and gripping gestures for safety on walking aids. Robot Hum. Interact. Commun. 2014 RO-MAN 23rd IEEE Int. Symp. On, IEEE. 2014. pp. 756–61.
- [40] Paulo J, Peixoto P, Nunes U. A novel vision-based human- machine interface for a robotic walker framework. Robot Hum. Interact. Commun. RO-MAN 2015 24th IEEE Int. Symp. On, IEEE. 2015. pp. 134–9.
- [41] Harato K, Nagura T, Matsumoto H, Otani T, Toyama Y, Suda Y. A gait analysis of simulated knee flexion contracture to elucidate knee-spine syndrome. Gait Posture 2008;28:687–92. http://dx.doi.org/10.1016/j.gaitpost.2008.05.008.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f2a064f0-9943-45ba-9e50-60311c4b6d07