Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 26, nr 1 | 16--23
Tytuł artykułu

Effect of calcination temperatures on optical and magnetic properties of FeWO4 nanoparticles

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Calcination temperature is a crucial parameter that can be easily controlled to induce a change in material properties. Herein, iron tungstate (FeWO4) was synthesized via a hydrothermal method using iron(II) sulfate heptahydrate and sodium tungstate dihydrate as precursors and calcined at the temperature between 300°C and 700°C. With increasing calcination temperature, the saturation magnetization of FeWO4 nanoparticles decreased from 6.6 emu/g for FeWO4 to 0.4 emu/g for FeWO4_700, whereas their band gaps increased from 1.95 eV for FeWO4 to 2.20 eV for FeWO4_700. More crystallinity and crystal defects, and morphological changes at higher calcination temperatures contributed to varying magneto-optical properties of FeWO4 nanoparticles.
Wydawca

Rocznik
Strony
16--23
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wz.
Twórcy
  • Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam, nqkanh@ntt.edu.vn
  • Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
  • Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
  • Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
  • Ho Chi Minh City University of Natural Resources and Environment, Ho Chi Minh City, Vietnam
  • Youth Development Science and Technology Center, Ho Chi Minh City, Viet Nam
Bibliografia
  • 1. Sorouri, A.M., Sobhani-Nasab, A., Ganjali, M.R., Manani, S., Ehrlich, H., Joseph, Y. & Rahimi-Nasrabadi, M. (2023). Metal tungstates nanostructures for supercapacitors: A review. Appl. Mater. Today 32, 101819. DOI: 10.1016/j.apmt.2023.101819.
  • 2. Qian, J., Shen, L., Wang, Y., Li, L. & Zhang, Y. (2023). Photo-Fenton catalytic and photocatalytic performance of FeWO4 nanorods prepared at different pH. Mater. Lett. 334, 133705. DOI: 10.1016/j.matlet.2022.133705.
  • 3. Adak, M.K., Rajput, A., Mallick, L. & Chakraborty, B. (2022). Electrochemically robust ferberite (FeWO4) nanostructure as an anode material for alkaline water- and alcohol-oxidation reaction. ACS Appl. Energ. Mater. 5(5), 5652–5665. DOI: 10.1021/acsaem.1c03995.
  • 4. Tang, X., Chen, J., Zhang, M., Sun, J. & Yang, X. (2023). Tunable catalytic activity of FeWO4 nanomaterials for sensitive assays of pyrophosphate ion and alkaline phosphatase activity. Sci. China Chem. 66(6), 1860–1868. DOI: 10.1007/s11426-023-1583-8.
  • 5. Patil, A.R., Dongale, T.D., Namade, L.D., Mohite, S.V., Kim, Y., Sutar, S.S., Kamat, R.K. & Rajpure, K.Y. (2023). Sprayed FeWO4 thin film-based memristive device with negative differential resistance effect for non-volatile memory and synaptic learning applications. J. Colloid Interf. Sci. 642, 540–553. DOI: 10.1016/j.jcis.2023.03.189.
  • 6. Qian, H., Cao, L., Liao, S., Xie, S., Xiong, X. & Zou, J. (2023). Construction of noble-metal-free FeWO4/Mn0.5Cd0.5S photocatalyst to optimize H2 evolution performance in water splitting. Int. J. Hydrog. Energy 48(23), 8514–8525. DOI: 10.1016/j.ijhydene.2022.11.284.
  • 7. Wang, H., Xu, L., Deng, D., Liu, X., Li, H. & Su, D. (2023). Regulated electronic structure and improved electro-catalytic performances of S-doped FeWO4 for rechargeable zinc-air batteries. J. Energy Chem. 76, 359–367. DOI: 10.1016/j.jechem.2022.09.023.
  • 8. Goubard-Bretesché, N., Crosnier, O., Douard, C., Iadecola, A., Retoux, R., Payen, C., Doublet, M.-L., Kisu, K., Iwama, E., Naoi, K., Favier, F. & Brousse, T. (2020). Unveiling pseudocapacitive charge storage behavior in FeWO4 electrode material by operando X-ray absorption spectroscopy. Small 16(33), 2002855. DOI: 10.1002/smll.202002855.
  • 9. Boudghene Stambouli, H., Guenfoud, F., Benomara, A., Mokhtari, M. & Sönmez-Çelebi, M. (2021). Synthesis of FeWO4 heterogeneous composite by the sol–gel process: enhanced photocatalytic activity on malachite green. React. Kinet. Mech. Catal. 133(1), 563–578. DOI: 10.1007/s11144-021-01994-x.
  • 10. Yang, G. & Park, S.-J. (2019). Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials 12(7), 1177. DOI: 10.3390/ma12071177.
  • 11. Patil, S.S., Chougale, U.M., Kambale, R.K. & Fulari, V.J. (2023). Hydrothermal synthesis of CoWO4 nanoparticles and evaluation of their supercapacitive performance. J. Energy Storage 67, 107517. DOI: 10.1016/j.est.2023.107517.
  • 12. Yu, F., Cao, L., Huang, J. & Wu, J. (2013). Effects of pH on the microstructures and optical property of FeWO4 nanocrystallites prepared via hydrothermal method. Ceram. Int. 39(4), 4133–4138. DOI: 10.1016/j.ceramint.2012.10.269.
  • 13. Sun, D., Iqbal, N., Liao, W., Lu, Y., He, X., Wang, K., Ma, B., Zhu, Y., Sun, K., Sun, Z. & Li, T. (2022). Efficient degradation of MB dye by 1D FeWO4 nanomaterials through the synergistic effect of piezo-Fenton catalysis. Ceram. Int. 48(17), 25465–25473. DOI: 10.1016/j.ceramint.2022.05.225.
  • 14. Sun, B., Liu, Y. & Chen, P. (2014). Room-temperature multiferroic properties of single-crystalline FeWO4 nanowires. Scr. Mater. 89, 17–20. DOI: 10.1016/j.scriptamat.2014.06.030.
  • 15. Zhang, J., Wang, Y., Li, S., Wang, X., Huang, F., Xie, A. & Shen, Y. (2011). Controlled synthesis, growth mechanism and optical properties of FeWO4 hierarchical microstructures. Cryst. Eng. Comm. 13(19), 5744–5750. DOI: 10.1039/C1CE05416C.
  • 16. Kądziołka, D., Grzechulska-Damszel, J. & Schmidt, B. (2022). Simultaneous photooxidation and photoreduction of phenol and Cr(VI) ions using titania modified with nanosilica. Pol. J. Chem. Technol. 24(4), 23–29. DOI: 10.2478/pjct-2022-0025.
  • 17. Sangeetha, A., Jaya Seeli, S., Bhuvana, K.P., Kader, M.A. & Nayak, S.K. (2019). Correlation between calcination temperature and optical parameter of zinc oxide (ZnO) nanoparticles. J. Sol-Gel Sci. Technol. 91(2), 261–272. DOI: 10.1007/s10971-019-05000-8.
  • 18. Chan, Y.B., Selvanathan, V., Tey, L.-H., Akhtaruzzaman, M., Anur, F.H., Djearamane, S., Watanabe, A. & Aminuzzaman, M. (2022). Effect of calcination temperature on structural, morphological and optical properties of copper oxide nano-structures derived from Garcinia mangostana L. leaf extract. Nanomaterials 12(20), 3589. DOI: 10.3390/nano12203589.
  • 19. Hoghoghifard, S. & Moradi, M. (2022). Influence of annealing temperature on structural, magnetic, and dielectric properties of NiFe2O4 nanorods synthesized by simple hydrothermal method. Ceram. Int. 48(12), 17768–17775. DOI: 10.1016/j.ceramint.2022.03.047.
  • 20. Mahmoudi Chenari, H. & Zarodi, M. (2022). Electrospinning process of CuxCo3-xO4 fibers (CCOFs): structural, surface morphology, optical and magnetic study. J. Magn. Magn. Mater. 562, 169853. DOI: 10.1016/j.jmmm.2022.169853.
  • 21. Victory, M., Pant, R.P. & Phanjoubam, S. (2020). Synthesis and characterization of oleic acid coated Fe–Mn ferrite based ferrofluid. Mater. Chem. Phys. 240, 122210. DOI: 10.1016/j.matchemphys.2019.122210.
  • 22. Shen,, H., Xue, W., Fu, F., Sun, J., Zhen, Y., Wang, D., Shao, B. & Tang, J. (2018). Efficient degradation of phenol and 4-nitrophenol by surface oxygen vacancies and plasmonic silver co-modified Bi2MoO6 photocatalysts. Chem.-Eur. J. 24(69), 18463–18478. DOI: 10.1002/chem.201804267.
  • 23. Liu, D., Lv, Y., Zhang, M., Liu, Y., Zhu, Y., Zong, R. & Zhu, Y. (2014). Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets. J. Mater. Chem. A 2(37), 15377–15388. DOI: 10.1039/C4TA02678K.
  • 24. Nandi, P. & Das, D. (2019). Photocatalytic degradation of Rhodamine-B dye by stable ZnO nanostructures with different calcination temperature induced defects. J. Appl. Surf. Sci. 465, 546–556. DOI: 10.1016/j.apsusc.2018.09.193.
  • 25. Teh, G.B., Wong, Y.C. & Tilley, R.D. (2011). Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite. J. Magn. Magn. Mater. 323(17), 2318–2322. DOI: 10.1016/j.jmmm.2011.04.014.
  • 26. Rashidizadeh, A., Esmaili Zand, H.R., Ghafuri, H. & Rezazadeh, Z. (2020). Graphitic carbon nitride nanosheet/FeWO4 nanoparticle composite for tandem photooxidation/knoevenagel condensation. ACS Appl. Nano Mater. 3(7), 7057–7065. DOI: 10.1021/acsanm.0c01380.
  • 27. Jamali, M. & Shariatmadar Tehrani, F. (2020). Effect of synthesis route on the structural and morphological properties of WO3 nanostructures. Mater. Sci. Semicond. Process 107, 104829. DOI: 10.1016/j.mssp.2019.104829.
  • 28. Leal, G.F., Barrett, D.H., Carrer, H., Figueroa, S.J.A., Teixeira-Neto, E., Curvelo, A.A.S. & Rodella, C.B. (2019). Morphological, structural, and chemical properties of thermally stable Ni-Nb2O5 for catalytic applications. J. Phys. Chem. C 123(5), 3130–3143. DOI: 10.1021/acs.jpcc.8b09177.
  • 29. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9-10), 1051–1069. DOI: 10.1515/pac-2014-1117.
  • 30. Tran, N.M., Doan, T.C. & Yoo, H. (2022). Fabrication of hollow fibrous nanosilica with large pore channels. Chem. Commun. 58(89), 12431–12434. DOI: 10.1039/D2CC04680F.
  • 31. Prates da Costa, E., Hofmann, A., Göbel, U., Cop, P. & Smarsly, B.M. (2022). Development of pore morphology during nitrate group removal by calcination of mesoporous CexZr1-x-y-zYyLazO2−δ Powders. Langmuir 38(27), 8342–8352. DOI: 10.1021/acs.langmuir.2c00875.
  • 32. Egger, S.M., Hurley, K.R., Datt, A., Swindlehurst, G. & Haynes, C.L. (2015). Ultraporous mesostructured silica nanoparticles. Chem. Mat. 27(9), 3193–3196. DOI: 10.1021/cm504448u.
  • 33. Tran, N.M., Nam, Y. & Yoo, H. (2022). Fabrication of dendritic fibrous silica nanolayer on optimized water-glass-based synthetic nanosilica from rice husk ash. Ceram. Int. 48(21), 32409–32417. DOI: 10.1016/j.ceramint.2022.07.184.
  • 34. Sagar, T.V., Rao, T.S. & Naidu, K.C.B. (2020). Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0–0.8). Ceram. Int. 46(8, Part B), 11515–11529. DOI: 10.1016/j. ceramint.2020.01.178.
  • 35. Luo, D., Yuan, J., Zhou, J., Zou, M., Xi, R., Qin, Y., Shen, Q., Hu, S., Xu, J., Nie, M., Xu, D. & Wu, B. (2021). Synthesis of samarium doped ferrite and its enhanced photocatalytic degradation of perfluorooctanoic acid (PFOA). Opt. Mater. 122, 111636. DOI: 10.1016/j.optmat.2021.111636.
  • 36. Sadeghzadeh-Attar, A. (2018). Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures. Sol. Energy Mater. Sol. Cells 183, 16–24. DOI: 10.1016/j.solmat.2018.03.046.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f26c0c49-e193-468e-9efc-5b1246fe99ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.