Effect of calcination temperatures on optical and magnetic properties of FeWO₄ nanoparticles

Anh Q.K. Nguyen^{1*}, Thi K.N. Tran¹, Bich N. Hoang¹, Ngo T.C. Quyen¹, Tai T. Huynh², Nguyen P. Yen³, Bich N. Nguyen^{4*}

¹Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Viet Nam

²Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City 700000, Vietnam

³Youth Development Science and Technology Center, Ho Chi Minh City 70000, Viet Nam

⁴Dong Thap University, Cao Lanh City, 870000, Viet Nam

*Corresponding author: e-mail: nqkanh@ntt.edu.vn (Anh Q.K. Nguyen), nnbich@dthu.edu.vn (Bich N. Nguyen)

Calcination temperature is a crucial parameter that can be easily controlled to induce a change in material properties. Herein, iron tungstate (FeWO₄) was synthesized via a hydrothermal method using iron(II) sulfate heptahydrate and sodium tungstate dihydrate as precursors and calcined at the temperature between 300 °C and 700 °C. With increasing calcination temperature, the saturation magnetization of FeWO₄ nanoparticles decreased from 6.6 emu/g for FeWO₄ to 0.4 emu/g for FeWO₄_700, whereas their band gaps increased from 1.95 eV for FeWO₄ to 2.20 eV for FeWO₄_700. More crystallinity and crystal defects, and morphological changes at higher calcination temperatures contributed to varying magneto-optical properties of FeWO₄ nanoparticles.

Keywords: Iron tungstate; Calcination temperature; Optical; Magnetic; Hydrothermal synthesis.

INTRODUCTION

💲 sciendo

Iron tungstate (FeWO₄) is classified into ABO₄-type oxides, which possess a wolframite-type structure built up by WO_6 octahedral units¹. Recently, FeWO₄ has been extensively applied to photocatalysis², electrocatalysis³, biosensing⁴, and memristive devices⁵ owing to its low--cost production, strong chemical stability, and excellent electro-magneto-optical properties^{6,7}. Therefore, several methods, such as hydrothermal², solvothermal³, coprecipitation⁸, sol-gel process⁹, and chemical spray pyrolysis⁵, have been developed for the synthesis of FeWO₄ nanoparticles. Among them, the hydrothermal method provides a simple and environmentally friendly means of preparing nanomaterials with controllable morphologies and phase structures, and desired physico-chemical characteristics via adjusting operating parameters¹⁰. In addition, the environment in the hydrothermal process facilitates the dissolution of reactant substances (i.e., even insoluble under normal conditions), resulting in homogenous nucleation and growth of nanocrystals; therefore, it has proven a particularly effective technique for the synthesis of bimetallic oxides, such as FeWO₄, with high purity¹¹.

Controlling synthetic parameters is an effective strategy for modifying the structural, morphological, and physicochemical properties of materials. FeWO₄ prepared at different pH exhibited different morphologies and band gap (E_g) values (i.e., hexagonal flakes and $E_g = 2.35$ eV at pH 2, small nanoparticles and $E_g = 2.45$ eV at pH 7, thin nanorods and $E_g = 2.33$ eV at pH 9, and a mixture of flakes, particles, and rods and $E_g = 2.50$ eV at pH 10)¹². Increasing the amount of NaOH additive (0, 0.5, and 1 g) in the hydrothermal synthesis of FeWO₄ nanomaterials changed their morphologies from nanoparticles to nanorods to nanofibers with the increased BET surface areas of 4.4, 19.5, and 28.8 m²/g, and the decreased charge transfer resistance, respectively¹³. Cetyltrimethylammonium bromide induced the formation of FeWO₄ nanowires with saturation magnetization (M_s) of 1.7 emu·g⁻¹¹⁴, while the combination of ethylenediaminetetraacetic acid disodium salt and hexamethylenetetramine directed the growth of flowerlike FeWO₄ microcrystal with M_s of 0.01 emu·g⁻¹¹⁵.

Calcination temperature significantly affects the optical and magnetic characteristics of nanomaterials¹⁶, and its effects are complex and various depending on the intrinsic nature of the materials. Calcination at elevated temperatures could induce crystal phase transformation, resulting in a difference in the optical properties of ZnO nanoparticles¹⁷. Increasing calcination temperature increased the crystallinity, reducing the band-gap values of CuO nanospheres due to the quantum confinement effect¹⁸. Hoghoghifard S. et al. reported that saturation magnetization of NiFe2O4 nanorods increased with increasing calcination temperature¹⁹; however, Chenari H.M. et al. showed an opposing result for $Cu_{x}Co_{3-x}O_{4}^{20}$. These results could be attributed to the change of material surface, such as cation rearrangement, a varying amount of surface spins, and the formation of spin-glass states according to calcination temperature²¹. Therefore, the change in the magneto-optical behavior of various materials as a function of calcination temperature has been extensively investigated. While the influence of several synthetic parameters, such as pH and chemical additives, on the properties of FeWO4 was explored, that of calcination temperature has not yet been reported.

In this work, we synthesized $FeWO_4$ nanoparticles via a hydrothermal route and calcined them at different temperatures. Crystal structure, morphology, surface area, magnetic, and optical properties of as-prepared $FeWO_4$ samples were entirely characterized using X-ray diffraction technique, transmission electron microscopy, gas sorption analyzer, vibrating sample magnetometer, and UV-Vis diffuse reflectance spectroscopy, respectively. The variation in saturation magnetization and band gap of $FeWO_4$ nanoparticles depending on calcination temperature was investigated and discussed in detail.

EXPERIMENTAL

Chemicals

Chemicals used in this study include: iron(II) sulfate heptahydrate (FeSO₄ · 7H₂O, \geq 99%, Xilong), sodium tungstate dihydrate (Na₂WO₄ · 2H₂O, \geq 99%, Acros), sodium hydroxide (NaOH, \geq 96%, Xilong), barium sulfate (BaSO₄, \geq 99%, Xilong). Deionized water was produced by a water still (WSC/4D, Hamilton Laboratory Glass LTD., UK).

Synthetic procedure of FeWO₄ nanoparticles

FeWO₄ nanoparticles were fabricated via a hydrothermal method using Na₂WO₄ · 2H₂O and FeSO₄ · 7H₂O as precursors of W and Fe, respectively (Fig. 1)¹². 35 mL of Na₂WO₄ solution (5 mmol, 1.6493 g) was pipetted dropwise into a 100 mL-beaker containing 35 mL of FeSO₄ solution (5 mmol, 1.3901 g) under vigorous stirring at 700 rpm. The mixture was adjusted to pH 8 before being transferred to a 100 mL-sealed teflon vessel autoclave and heated at 200 °C for 12 h in an oven (UN10, Memmert, Germany). The precipitate was separated via centrifugation and washed several times with D.I. H₂O before being dried at 80 °C for 12 h. The mass of the obtained product and the synthetic yield were 0.918 ± 0.017 g and 60.43 ± 1.15 %, respectively. Finally, the samples were calcined at different temperatures for 3 h to compare their properties. FeWO₄, FeWO₄_300, FeWO₄_500, and FeWO₄_700 denote the sample without calcination and samples calcined at 300, 500, and 700°C, respectively (Fig. 2).

Characterization methods

Crystal structures of the prepared materials were determined using an X-ray diffractometer (Empyrean, PANalytical). XRD patterns were recorded at the voltage of 45 kV and current of 40 mA using Cu anode (K α = 1.54 Å) in the 2 θ range of 5–80° with a scanning rate of 1.6°/min. Morphologies of FeWO₄ samples were observed on a transmission electron microscope (JEM 1400 flash, JEOL) operating at 120 kV. The existence of chemical elements on the surface of FeWO₄ samples was identified using a scanning electron microscope (S4800, Hitachi) coupled with an energy-dispersive X-ray (EDX) spectroscopy (H-7593, HORIBA). The particle size analysis was performed on a nanopartical series

Figure 1. Scheme for synthetic procedure of FeWO₄ nanoparticles

Figure 2. Pictures of (a) $FeWO_4$, (b) $FeWO_4_300$, (c) $FeWO_{4_500}$, and (d) $FeWO_{4_700}$ samples

instrument (SZ-100, HORIBA). The chemical bonds in FeWO₄ samples were determined using a Fouriertransform infrared spectroscopy (FT-IR) (NICOLET 6700, Thermo). Nitrogen sorption isotherms of FeWO₄ samples were measured using a gas sorption analyzer (Nova 4000e, Quantachrome Instruments) and employed to calculate surface area values and pore size distribution based on Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Magnetization curves of FeWO₄ samples were measured using a vibrating sample magnetometer (Institute of Materials Science, Vietnam). The diffuse reflectance UV-Vis absorption spectra of FeWO₄ samples were recorded on a UV-Vis spectrophotometer (UV-2600, Shimadzu) using $BaSO_4$ as the reference. The optical band gap energies were estimated by extrapolating the linear segment of the Tauc plot to the x-axis.

RESULTS AND DISCUSSION

The XRD pattern of FeWO₄ exhibits the diffraction peaks at $2\theta = 18.8$, 23.7, 24.4, 30.4, 36.2, 36.3, 38.1, 41.1, 51.8, 53.5, 61.5, and 64.1, which are attributed to (100), (011), (110), (111), (002), (021), (200), (121), (130), (202), (113), and (132) crystal planes of monoclinic FeWO₄ (JCPDS 74-1130), respectively (Fig. 3)¹². When calcined at 300-700 °C, the above characteristic peaks became sharper, particularly for FeWO₄_700, without additional impurity peaks, indicating that the calcination process did not change the structural phase, but increased the crystallinity. In addition, a slight shift of the crystalline peaks to higher angles was observed with increasing calcination temperature, which implies a decrease in lattice spacing and distortion in the crystal structure, possibly because of the formation of lattice defects and/or oxygen vacancies at high temperatures²². High temperature during calcination could rupture and rearrange the bonding in the lattice or on the surface and increase the growth rate of particles, which induced to generate crystal defects^{23–25}.

The distinctive bonds of FeWO₄ were observed in their FT-IR spectra (Fig. 4). The peaks at 3420 and 1622 cm⁻¹ belong to the -OH stretching and bending vibration of water molecules, respectively⁹. The bands located at 871

Figure 3. XRD patterns of various FeWO₄ nanoparticles

and 825 cm⁻¹ can be attributed to the symmetrical stretching modes of Fe $-O-W^{26}$. The W-O bond stretching in WO₆ octahedral appeared at a wavenumber of 705 cm⁻¹²⁶. The peak shifts toward higher wavenumbers in the FT-IR spectra of FeWO₄_300, FeWO₄_500, and FeWO₄_700 were noticed, suggesting a progressive reduction in bond lengths with calcination temperature increment²⁷, which is in good agreement with the XRD results.

TEM images in Figure 5 display the morphologies of FeWO₄ samples treated at different calcination temperatures. FeWO₄ samples synthesized with and without calcination comprise the mixture of nanosphere (i.e., diameter ~ 13-70 nm) and nanorod (i.e., width ~ 6-50 nm and length ~ 45-400 nm). The nanorod lengths of FeWO4_700 shortened compared with those of other FeWO₄ because higher calcination temperature may accelerate the chaotic state of particles, which inhibits a crystal orientation along to a specific plane and reduces the length of nanorods^{19, 28}. Figure 6 shows SEM micrographs and EDX analyses of various FeWO₄ samples. Several large aggregation of rod and sphere particles was observed on the surface of all FeWO₄ samples. The presence of iron, tungsten, and oxygen in all FeWO₄ samples was verified by the EDX spectra, confirming the formation of FeWO₄ without impurities. Figure 7 shows the particle size distribution of $FeWO_4$

Figure 4. FT-IR spectra of FeWO₄ nanoparticles

Figure 5. TEM images of (a) FeWO₄, (b) FeWO₄_300, (c) FeWO₄_500, and (d) FeWO₄_700

Figure 6. SEM images and EDX analyses of (a) and (b) $FeWO_4$, (c) and (d) $FeWO_4_300$, (e) and (f) $FeWO_4_500$, and (g) and (h) $FeWO_{4_700}$

Figure 7. Particle size distribution of (a) $FeWO_4$, (b) $FeWO_4$ 300, (c) $FeWO_4$ 500, and (d) $FeWO_4$ 700

samples measured by using dynamic light scattering technique. Their particle size distributed in the range of 72.9–247.0 nm with average diameters calculated as 121.6, 119.9, 140.8, and 138.8 nm for FeWO₄, FeWO₄_300, FeWO₄_500, and FeWO₄_700, respectively.

 N_2 sorption curves of all FeWO₄ samples in Figure 8a are identical to the type IV isotherm associated with the H3 hysteresis loop based on the IUPAC recommendation²⁹, suggesting the existence of mesoporosity in their structures³⁰. The Brunauer-Emmett-Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore volume values were calculated to be 34.8 m²/g and 0.223 cm³/g for FeWO₄, 30.5 m²/g and 0.201 cm³/g for FeWO₄_300, 27.4 m²/g and 0.192 cm³/g for FeWO₄_500, and 10.8 m²/g and 0.045 cm³/g for FeWO₄_700, respectively (Table 1). The decrease in surface areas and pore volumes with increasing calcination temperature is due to disruption and obstruction of the pore structure at high temperatures³¹. The pore size distribution of FeWO₄ materials

was derived from the adsorption isotherm based on the BJH method (Fig. 8b). The narrow peaks at 2.181 nm for FeWO₄, 2.207 nm for FeWO₄_300, 2.571 nm for FeWO₄_500, and 0.996 nm for FeWO₄_700 can be attributed to intraparticle pores, while the broad peaks at 33.454 nm for FeWO₄, 34.464 nm for FeWO₄_300, and 34.160 nm for FeWO₄_500 can be assigned to interparticle voids^{32,33}. The broad peak in the pore size distribution of FeWO₄_700 disappeared due to the formation of large aggregates at high temperatures.

 Table 1. BET surface area, BJH pore volume, and pore diameter values of various FeWO₄ samples

Sample	BET surface area (m²/g)	BJH pore volume (cm³/g)	Pore diameter (nm)
FeWO ₄	34.811	0.223	2.181
FeWO ₄ _300	30.464	0.201	2.207
FeWO ₄ _500	27.381	0.192	2.571
FeWO ₄ _700	10.766	0.045	0.996

Figure 8. (a) Nitrogen sorption isotherms and (b) pore size distribution of various $FeWO_4$ samples

Figure 9. Magnetization curves of various FeWO₄ nanoparticles

The effects of calcination temperatures on the magnetic properties of FeWO₄ nanoparticles were investigated (Fig. 9). FeWO₄ materials showed similar hysteresis loops when the external magnetic field was applied and removed, indicating their ferromagnetic property under room temperature. The saturation magnetization, coercivity, and retentivity of FeWO4 materials were derived from their hysteresis loops and presented in Table 2. All three above parameters of FeWO4 samples decreased with an increase in calcination temperature, suggesting that calcination had a negative impact on their magnetic flux density and retentivity. These results could be attributed to the defect formation and morphological changes of FeWO₄ samples observed in the XRD patterns and TEM images depending on calcination temperatures. In addition, low specific surface area caused by severe aggregation at high calcination temperature reduced the amount of surface spins³⁴, which negatively affected the magnetic properties of FeWO₄ materials. FeWO₄ nanoparticles with higher saturation magnetization may be more appealing to applications in catalysis and biomedicine.

The optical band gap energies, which were derived from the Tauc plots of FeWO₄, FeWO₄_300, FeWO₄_500, and FeWO₄_700 (Fig. 10a), are 1.95, 2.00, 2.05, and 2.20 eV, respectively. All FeWO₄ samples can absorb visible light region ($\lambda > 420$ nm) (Fig. 10b); however, FeWO₄_700 exhibits a larger band gap than the others, which may decelerate the recombination of photo-generated electrons and holes for enhancing photocatalysis efficiency³⁵.

Table 2. Magnetic properties of various FeWO₄ nanoparticles

Туре	Saturation magnetization ^a (emu/g)	Coercivity ^b (Oe)	Retentivity ^c (emu/g)	
FeWO ₄	6.6	257.5	1.63	
FeWO ₄ _300	4.8	38.0	0.41	
FeWO ₄ _500	3.3	20.7	0.14	
FeWO ₄ _700	0.4	n.d. ^d	0.04	

^a Magnetization value at the highest magnetic field. ^b Magnetic field at the intersection point between the hysteresis

loop and negative x-axis. $^{\circ}\,\text{Magnetization}$ value at the intersection point between the

hysteresis loop and positive y-axis.

^d Not determined due to many intersection points caused by noise.

More crystallinity and oxygen vacancy content in FeWO_4 nanoparticles at higher calcination temperatures could be responsible for the increase in their band gap values³⁶.

Table 3 shows a comparison of morphology, BET surface areas, band-gap, and saturation magnetization of FeWO₄ prepared in this study with other works. Among synthetic methods, hydrothermal was employed for the synthesis of FeWO₄ the most, and allowed producing the FeWO₄ materials with various morphologies. BET, band-gap, and saturation magnetization values of FeWO₄ prepared in previous studies varied in the range of 3.33-33.35, 1.54-3.17, and 0.03-14.7, respectively, which are almost comparable to those of FeWO₄ prepared in this study. This result suggests that changing calcination temperatures effectively controlled the physical properties of the FeWO₄ material. In addition, this study provided information on both magnetic and optical properties and their relationship with calcination temperature, which was absent from other studies.

CONCLUSION

FeWO₄ nanoparticles were successfully synthesized via a hydrothermal reaction of Na₂WO₄ and FeSO₄ at 200 °C for 12 h. The calcination process increased crystallinity, distorted the lattice spacing, facilitated the defects formation, and hindered the anisotropic crystal growth, which altered the properties of FeWO₄ nanoparticles, including surface areas, magnetism, and band gap energies. When increasing calcination temperature, the optical band gap of FeWO₄ samples broadened from 1.95 eV to 2.20 eV, but their saturation magnetization values reduced from 6.6 emu/g to 0.4 emu/g. Manipulating calcination temperature is a facile and effective way, enabling FeWO₄

Table 3. Physical properties of FeWO₄ in this study compared with previous publications

No.	Synthetic method	Morphology	BET value (m ² /g)	Optical band-gap (eV)	Magnetization (emu/g)	Ref.
1	solvothermal	platelike	n.d.ª	n.d.	0.5 at 100 K	37
2	hydrothermal	nanoparticle	22.17	1.54	0.51	38
3	hydrothermal	nanorod	23.30	1.98	n.d.	39
4	hydrothermal	quadrilateral disk	15.00	1.98	n.d.	40
5	hydrothermal	nanorod	33.35	2.50	n.d.	41
6	hydrothermal	nanoparticle	21.75	1.95	n.d.	42
7	hydrothermal	nanorod	n.d.	2.16	0.03 at 100 K	43
8	hydrothermal	irregular block	3.33	2.79	n.d.	44
9	hydrothermal	sphere	n.d.	n.d.	14.7	45
10	solvothermal	flowerlike	30.77	1.70	n.d.	46
11	co-precipitation	rod	17.76	1.95	n.d.	47
12	hydrothermal	nanowire	n.d.	n.d.	1.7	14
13	hydrothermal	nanocrystal	n.d.	n.d.	1.0 at 100 K	48
14	sol-gel	irregular block	36.58	3.17	n.d.	9
15	hydrothermal	nanosphere + nanorod	10.77-34.81	1.95-2.20	0.4–6.6	This study

^a Not determined

Figure 10. (a) Tauc plots and (b) UV–visible absorption spectra of various FeWO₄ nanoparticles

nanoparticles with various physicochemical properties to be applicable to a wide range of practical fields.

ACKNOWLEDGEMENT

The research topic was supported by The Youth Incubator for Science and Technology Programme, managed by Youth Promotion Science and Technology Center - Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is "17/2022/ HĐ-KHCNT-VU" signed on 30th, December, 2022.

LITERATURE CITED

1. Sorouri, A.M., Sobhani-Nasab, A., Ganjali, M.R., Manani, S., Ehrlich, H., Joseph, Y. & Rahimi-Nasrabadi, M. (2023). Metal tungstates nanostructures for supercapacitors: A review. *Appl. Mater. Today* 32, 101819. DOI: 10.1016/j.apmt.2023.101819.

2. Qian, J., Shen, L., Wang, Y., Li, L. & Zhang, Y. (2023). Photo-Fenton catalytic and photocatalytic performance of $FeWO_4$ nanorods prepared at different pH. *Mater. Lett.* 334, 133705. DOI: 10.1016/j.matlet.2022.133705.

3. Adak, M.K., Rajput, A., Mallick, L. & Chakraborty, B. (2022). Electrochemically robust ferberite (FeWO₄) nanostructure as an anode material for alkaline water- and alcohol-oxidation reaction. *ACS Appl. Energ. Mater.* 5(5), 5652–5665. DOI: 10.1021/acsaem.1c03995.

4. Tang, X., Chen, J., Zhang, M., Sun, J. & Yang, X. (2023). Tunable catalytic activity of $FeWO_4$ nanomaterials for sensitive assays of pyrophosphate ion and alkaline phosphatase activity. *Sci. China Chem.* 66(6), 1860–1868. DOI: 10.1007/s11426-023-1583-8.

5. Patil, A.R., Dongale, T.D., Namade, L.D., Mohite, S.V., Kim, Y., Sutar, S.S., Kamat, R.K. & Rajpure, K.Y. (2023). Sprayed FeWO₄ thin film-based memristive device with negative differential resistance effect for non-volatile memory and synaptic learning applications. *J. Colloid Interf. Sci.* 642, 540–553. DOI: 10.1016/j.jcis.2023.03.189.

6. Qian, H., Cao, L., Liao, S., Xie, S., Xiong, X. & Zou, J. (2023). Construction of noble-metal-free $FeWO_4/Mn_{0.5}Cd_{0.5}S$ photocatalyst to optimize H_2 evolution performance in water splitting. *Int. J. Hydrog. Energy* 48(23), 8514–8525. DOI: 10.1016/j.ijhydene.2022.11.284.

7. Wang, H., Xu, L., Deng, D., Liu, X., Li, H. & Su, D. (2023). Regulated electronic structure and improved electrocatalytic performances of S-doped FeWO₄ for rechargeable zinc-air batteries. *J. Energy Chem.* 76, 359–367. DOI: 10.1016/j. jechem.2022.09.023.

8. Goubard-Bretesché, N., Crosnier, O., Douard, C., Iadecola, A., Retoux, R., Payen, C., Doublet, M.-L., Kisu, K., Iwama, E., Naoi, K., Favier, F. & Brousse, T. (2020). Unveiling pseudocapacitive charge storage behavior in $FeWO_4$ electrode material by operando X-ray absorption spectroscopy. *Small* 16(33), 2002855. DOI: 10.1002/smll.202002855.

9. Boudghene Stambouli, H., Guenfoud, F., Benomara, A., Mokhtari, M. & Sönmez-Çelebi, M. (2021). Synthesis of $FeWO_4$ heterogeneous composite by the sol-gel process: enhanced photocatalytic activity on malachite green. *React. Kinet. Mech. Catal.* 133(1), 563–578. DOI: 10.1007/s11144-021-01994-x.

10. Yang, G. & Park, S.-J. (2019). Conventional and microwave hydrothermal synthesis and application of functional materials: a review. *Materials* 12(7), 1177. DOI: 10.3390/ma12071177.

11. Patil, S.S., Chougale, U.M., Kambale, R.K. & Fulari, V.J. (2023). Hydrothermal synthesis of $CoWO_4$ nanoparticles and evaluation of their supercapacitive performance. *J. Energy Storage* 67, 107517. DOI: 10.1016/j.est.2023.107517.

12. Yu, F, Cao, L., Huang, J. & Wu, J. (2013). Effects of pH on the microstructures and optical property of $FeWO_4$ nanocrystallites prepared via hydrothermal method. *Ceram. Int.* 39(4), 4133–4138. DOI: 10.1016/j.ceramint.2012.10.269.

13. Sun, D., Iqbal, N., Liao, W., Lu, Y., He, X., Wang, K., Ma, B., Zhu, Y., Sun, K., Sun, Z. & Li, T. (2022). Efficient degradation of MB dye by 1D FeWO₄ nanomaterials through the synergistic effect of piezo-Fenton catalysis. *Ceram. Int.* 48(17), 25465–25473. DOI: 10.1016/j.ceramint.2022.05.225.

14. Sun, B., Liu, Y. & Chen, P. (2014). Room-temperature multiferroic properties of single-crystalline FeWO4 nanowires. *Scr. Mater.* 89, 17–20. DOI: 10.1016/j.scriptamat.2014.06.030.

15. Zhang, J., Wang, Y., Li, S., Wang, X., Huang, F., Xie, A. & Shen, Y. (2011). Controlled synthesis, growth mechanism and optical properties of $FeWO_4$ hierarchical microstructures. *Cryst. Eng. Comm.* 13(19), 5744–5750. DOI: 10.1039/C1CE05416C.

16. Kądziołka, D., Grzechulska-Damszel, J. & Schmidt, B. (2022). Simultaneous photooxidation and photoreduction of phenol and Cr(VI) ions using titania modified with nanosilica. *Pol. J. Chem. Technol.* 24(4), 23–29. DOI: 10.2478/pjct-2022-0025.

17. Sangeetha, A., Jaya Seeli, S., Bhuvana, K.P., Kader, M.A. & Nayak, S.K. (2019). Correlation between calcination temperature and optical parameter of zinc oxide (ZnO) nanoparticles. *J. Sol-Gel Sci. Technol.* 91(2), 261–272. DOI: 10.1007/s10971-019-05000-8.

18. Chan, Y.B., Selvanathan, V., Tey, L.-H., Akhtaruzzaman, M., Anur, F.H., Djearamane, S., Watanabe, A. & Aminuzzaman, M. (2022). Effect of calcination temperature on structural, morphological and optical properties of copper oxide nanostructures derived from Garcinia mangostana L. leaf extract. *Nanomaterials* 12(20), 3589. DOI: 10.3390/nano12203589.

19. Hoghoghifard, S. & Moradi, M. (2022). Influence of annealing temperature on structural, magnetic, and dielectric properties of NiFe₂O₄ nanorods synthesized by simple hy-

drothermal method. *Ceram. Int.* 48(12), 17768–17775. DOI: 10.1016/j.ceramint.2022.03.047.

20. Mahmoudi Chenari, H. & Zarodi, M. (2022). Electrospinning process of $Cu_xCo_{3-x}O_4$ fibers (CCOFs): structural, surface morphology, optical and magnetic study. *J. Magn. Magn. Mater.* 562, 169853. DOI: 10.1016/j.jmmm.2022.169853.

21. Victory, M., Pant, R.P. & Phanjoubam, S. (2020). Synthesis and characterization of oleic acid coated Fe–Mn ferrite based ferrofluid. *Mater. Chem. Phys.* 240, 122210. DOI: 10.1016/j. matchemphys.2019.122210.

22. Shen, H., Xue, W., Fu, F., Sun, J., Zhen, Y., Wang, D., Shao, B. & Tang, J. (2018). Efficient degradation of phenol and 4-nitrophenol by surface oxygen vacancies and plasmonic silver co-modified Bi₂MoO₆ photocatalysts. *Chem.-Eur. J.* 24(69), 18463–18478. DOI: 10.1002/chem.201804267.

23. Liu, D., Lv, Y., Zhang, M., Liu, Y., Zhu, Y., Zong, R. & Zhu, Y. (2014). Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets. *J. Mater. Chem. A* 2(37), 15377–15388. DOI: 10.1039/C4TA02678K.

24. Nandi, P. & Das, D. (2019). Photocatalytic degradation of Rhodamine-B dye by stable ZnO nanostructures with different calcination temperature induced defects. *J. Appl. Surf. Sci.* 465, 546–556. DOI: 10.1016/j.apsusc.2018.09.193.

25. Teh, G.B., Wong, Y.C. & Tilley, R.D. (2011). Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite. *J. Magn. Magn. Mater.* 323(17), 2318–2322. DOI: 10.1016/j.jmmm.2011.04.014.

26. Rashidizadeh, A., Esmaili Zand, H.R., Ghafuri, H. & Rezazadeh, Z. (2020). Graphitic carbon nitride nanosheet/FeWO₄ nanoparticle composite for tandem photooxidation/knoevenagel condensation. *ACS Appl. Nano Mater.* 3(7), 7057–7065. DOI: 10.1021/acsanm.0c01380.

27. Jamali, M. & Shariatmadar Tehrani, F. (2020). Effect of synthesis route on the structural and morphological properties of WO₃ nanostructures. *Mater. Sci. Semicond. Process* 107, 104829. DOI: 10.1016/j.mssp.2019.104829.

28. Leal, G.F., Barrett, D.H., Carrer, H., Figueroa, S.J.A., Teixeira-Neto, E., Curvelo, A.A.S. & Rodella, C.B. (2019). Morphological, structural, and chemical properties of thermally stable Ni-Nb₂O₅ for catalytic applications. J. Phys. Chem. C 123(5), 3130-3143. DOI: 10.1021/acs.jpcc.8b09177.

29. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Pure Appl. Chem.* 87(9-10), 1051–1069. DOI: 10.1515/pac-2014-1117.

30. Tran, N.M., Doan, T.C. & Yoo, H. (2022). Fabrication of hollow fibrous nanosilica with large pore channels. *Chem. Commun.* 58(89), 12431–12434. DOI: 10.1039/D2CC04680F.

31. Prates da Costa, E., Hofmann, A., Göbel, U., Cop, P. & Smarsly, B.M. (2022). Development of pore morphology during nitrate group removal by calcination of mesoporous $Ce_xZr_{1-x-y-z}Y_yLa_zO_{2-\delta}$ Powders. *Langmuir* 38(27), 8342–8352. DOI: 10.1021/acs.langmuir.2c00875.

32. Egger, S.M., Hurley, K.R., Datt, A., Swindlehurst, G. & Haynes, C.L. (2015). Ultraporous mesostructured silica nanoparticles. *Chem. Mat.* 27(9), 3193–3196. DOI: 10.1021/cm504448u.

33. Tran, N.M., Nam, Y. & Yoo, H. (2022). Fabrication of dendritic fibrous silica nanolayer on optimized water-glass-based synthetic nanosilica from rice husk ash. *Ceram. Int.* 48(21), 32409–32417. DOI: 10.1016/j.ceramint.2022.07.184.

34. Sagar, T.V., Rao, T.S. & Naidu, K.C.B. (2020). Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized $Ni_{0.2}Mg_{0.8-x}Zn_xFe_2O_4$ (x = 0.0–0.8). *Ceram. Int.* 46(8, Part B), 11515–11529. DOI: 10.1016/j. ceramint.2020.01.178.

35. Luo, D., Yuan, J., Zhou, J., Zou, M., Xi, R., Qin, Y., Shen, Q., Hu, S., Xu, J., Nie, M., Xu, D. & Wu, B. (2021). Synthesis of samarium doped ferrite and its enhanced photo-catalytic degradation of perfluorooctanoic acid (PFOA). *Opt. Mater.* 122, 111636. DOI: 10.1016/j.optmat.2021.111636.

36. Sadeghzadeh-Attar, A. (2018). Efficient photocatalytic degradation of methylene blue dye by SnO_2 nanotubes synthesized at different calcination temperatures. *Sol. Energy Mater. Sol. Cells* 183, 16–24. DOI: 10.1016/j.solmat.2018.03.046.