Warianty tytułu
Języki publikacji
Abstrakty
The main differences between soft and hard magnetic materials are commented on. It is discussed how the coercivity mechanisms can be affected by the domain wall energy. A spherical cap nucleus is used for this analysis. There is a competition between magnetostatic energy and domain wall energy terms. As a consequence, for soft magnetic materials, the magnetostatic energy term is dominant over the domain wall energy term. An explanation for the dependence of the coercivity with grain size is presented. For grain size above the single domain size, in hard magnetic materials with high magnetocrystalline anisotropy, the coercivity decreases following a law proportional to the inverse of the square root of the grain size, whereas in soft magnetic materials, the coercivity reduces proportionally to the inverse of grain size.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1087--1101
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr., wz.
Twórcy
autor
- PPGEM – EEEIMVR – UFF Universidade Federal Fluminense, Av dos Trabalhadores 420 Vila Santa Cecilia – Volta Redonda RJ 27255-125 – Brazil, marcosflavio @id.uff.br
autor
- PPGEM – EEEIMVR – UFF Universidade Federal Fluminense, Av dos Trabalhadores 420 Vila Santa Cecilia – Volta Redonda RJ 27255-125 – Brazil, joseadilsoncastro@id.uff.br
Bibliografia
- [1] Wohlfarth E.P., Hard magnetic materials, Advances in Physics, vol. 8, no. 30, pp. 87–224 (1959).
- [2] Stoner E.C., Ferromagnetism: magnetization curves, Reports on Progress in Physics, vol. 13, no. 1, pp. 83–183 (1950).
- [3] Amar H., Size Dependence of the Wall Characteristics in a Two-Domain Iron Particle, Journal of Applied Physics, vol. 29, no. 3, pp. 542–543 (1958), DOI: 10.1063/1.1723216.
- [4] Amar H., Magnetization Mechanism and Domain Structure of Multidomain Particles, Physical Review, vol. 111, no. 1, pp. 149–153 (1958), DOI: 10.1103/PhysRev.111.149.
- [5] Nesbitt E.A., Heidenreich R.D., The magnetic structure of Alnico 5, Electrical Engineering, vol. 71, no. 6, pp. 530–534 (1952), DOI: 10.1109/ee.1952.6437538.
- [6] de Campos M.F., Romero S.A., da Silva L.M., de Castro J.A., Shape Anisotropy and Magnetic Texture Determination in Anisotropic and Isotropic Alnico Magnets, JOM (2024), DOI: 10.1007/s11837-024- 06586-3.
- [7] de Campos M.F., Shape Anisotropy as Coercivity Mechanism, Materials Science Forum, vol. 869, pp. 591–595 (2016), DOI: 10.4028/www.scientific.net/msf.869.591.
- [8] Kumar K., RETM5 and RE2TM17 permanent magnets development, Journal of Applied Physics, vol. 63, no. 6, R13–R57 (1988), DOI: 10.1063/1.341084.
- [9] MMPA PMG-88, Permanent Magnet Guidelines, Magnetic Materials Producers Association, 11 South LaSalle Street, Suite 1400, Chicago, IL 60603 (1998), available at https://www.intemag.com/ images/MMPAPMG-88.pdf.
- [10] Stan Zurek, Magnetic Materials, available at https://www.e-magnetica.pl/doku.php/magnetic_materials.
- [11] Constantinides S., Semi hard magnets (2017), https://www.arnoldmagnetics.com/wp-content uploads/ 2017/10/Semi-Hard-Magnets-Constantinides-Magnetics-2011-psn-hi-res.pdf.
- [12] Bozorth R.M., Ferromagnetism, IEEE Press, Appendix 4, pp. 872–873 (1993).
- [13] Romero S.A., Moreira A.J., Landgraf F.F.G., de Campos M.F., Abnormal coercivity behavior and magnetostatic coupling in SmCoCuFeZr magnets, Journal of Magnetism and Magnetic Materials, vol. 514, 167147 (2020), DOI: 10.1016/j.jmmm.2020.167147.
- [14] de Campos M.F., de Castro J.A., Calculation of Recoil Curves in Isotropic and Anisotropic Stoner– Wohlfarth Materials, IEEE Transactions on Magnetics, vol. 56, no. 3, pp. 1–4, 7512304 (2020), DOI: 10.1109/TMAG.2019.2957147.
- [15] Neel L., Effet des cavites et des inclusions sur le champ coercitif, Cah. Phys., vol. 25, pp. 21–44 (1944).
- [16] Neel L., Remarques sur la theorie des proprietes magnetiques des couches minces et des grains fins, J. Phys Radium, vol. 17, no. 3, pp. 250–255 (1956).
- [17] Coleman J.E., Carey R., Magnetisation reversal of spherical particles containing a single plane domain boundary, J. Phys. D: Appl. Phys., vol. 15, no. 3, pp. 473–486 (1982), DOI: 10.1088/0022-3727/15/3/013.
- [18] de Campos M.F., de Castro J.A., Nucleus Size Determination for Nd2Fe14B, Sm2Co17, SmCo5 and BaFe12O19 Magnets, Materials Science Forum, vols. 727–728, pp. 151–156 (2012), DOI: 10.4028/www.scientific.net/msf.727-728.151.
- [19] de Campos M.F., de Castro J.A., An overview on nucleation theories and models, Journal of Rare Earths, vol. 37, no. 10, pp. 1015–1022 (2019).
- [20] Kittel C., Theory of the Structure of Ferromagnetic Domains in Films and Small Particles, Physical Review, vol. 70, nos. 11–12, pp. 965–971 (1946).
- [21] Romero S.A., Rodrigues D., Jr., Germano T., Cohen R., de Castro J.A., de Campos M.F., Coercivity mechanisms in nanocrystalline Sm–Co–Cu thin films: the spring effect, Appl. Nanoscience, vol. 13, pp. 6353–6372 (2023).
- [22] de Campos M.F., de Castro J.A., Role of exchange energy on the relationship between coercivity and grain size: Application for hard ferrites, Proceedings of the 27th International Workshop on Rare Earth and Future Permanent Magnets and their Applications, University of Birmingham Birmingham UK (3rd-7th September 2023), pp. P2-21-8 (2023).
- [23] Kojima H., Fundamental properties of hexagonal ferrites with magnetoplumbite structure, In Handbook of Ferromagnetic Materials, Chapter 5, Edited by E.P. Wohlfarth, vol. 3, North-Holland Publishing Company, pp. 305–391 (1982).
- [24] Cullity B.D., Graham C.D., Jr., Introduction to Magnetic Materials, 2nd Edition, Wiley, Hoboken, New Jersey, 361 (2009).
- [25] Kneller E.F., Luborsky F.E., Particle Size Dependence of Coercivity and Remanence of Single-Domain Particles, J. Appl. Phys., vol. 34, pp. 656–658 (1963).
- [26] Adler E., Pfeiffer H., The influence of grain size and impurities on the magnetic properties of the soft magnetic alloy 47.5% NiFe, IEEE Transactions on Magnetics, vol. 10, no. 2, pp. 172–174 (1974), DOI: 10.1109/tmag.1974.1058314.
- [27] Pfeifer F., Radeloff C., Soft magnetic Ni–Fe and Co–Fe alloys – some physical and metallurgical aspects, Journal of Magnetism and Magnetic Materials, vol. 19, nos. 1–3, pp. 190–207 (1980), DOI: 10.1016/0304-8853(80)90592-2.
- [28] Pfeifer F., Kunz W., Bedeutung von kornstruktur und fremdkörpereinschlüssen für die magnetisierung seigenschaften hochpermeabler Ni–Fe-legierungen, Journal of Magnetism and Magnetic Materials, vol. 4, nos. 1–4, pp. 214–219 1977, DOI: 10.1016/0304-8853(77)90038-5.
- [29] Kunz W., Pfeifer F., The Influence of Grain Structure and Nonmagnetic Inclusions on the Magnetic Properties of High-Permeability Fe-Ni-Alloys, AIP Conference Proceedings (1976), DOI: 10.1063/1.2946158.
- [30] de Campos M.F., Achievements in micromagnetic techniques of steel plastic stage evaluation, Advances in Materials Science, vol. 20, no. 1, pp. 16–55 (2020), DOI: 10.2478/adms-2020-0002.
- [31] de Campos M.F., Coercivity Mechanism in Hard and Soft Sintered Magnetic Materials, Materials Science Forum, vol. 802, pp. 563–568 (2014), DOI: 10.4028/www.scientific.net/msf.802.563.
- [32] de Campos M.F., Emura M., Landgraf F.J.G., Consequences of magnetic aging for iron losses in electrical steels, Journal of Magnetism and Magnetic Materials, vol. 304, pp. e593–e595 (2006).
- [33] Volmer M., Weber A., Keimbildung in übersättigten Gebilden, Zeitschrift Für Physikalische Chemie, vol. 119, no. 1, pp. 277–301 (1926).
- [34] Volmer M., Kinetics of Phase Formation (Kinetik der Phasenbildung) (English translation) (1939), Available at: https://apps.dtic.mil/sti/citations/tr/ADA800534.
- [35] de Campos M.F., Sampaio da Silva F.A., Romero S.A., de Castro J.A., Hysteresis Modelling and Coercivity Mechanisms in Hard Ferrites, In 14th International Symposium on Linear Drivers for Industry Applications (LDIA), pp. 28–30 (2023), DOI: 10.1109/LDIA59564.2023.10297507.
- [36] de Campos M.F., Effect of Grain Size on the Coercivity of Sintered NdFeB Magnets, Materials Science Forum, vols. 660–661, pp. 284–289 (2010).
- [37] de Campos M.F., A General Coercivity Model for Soft Magnetic Materials, Materials Science Forum, vols. 727–728, pp. 157–162 (2012).
- [38] van der Zaag P.J., New views on the dissipation in soft magnetic ferrites, Journal of Magnetism and Magnetic Materials, vols. 196–197, pp. 315–319 (1999).
- [39] Aarts J., Abu Shiekah I., van der Zaag P.J., Domain structure in polycrystalline MnZn ferrite imaged by magnetic force microscopy, Journal of Applied Physics, vol. 85, no. 10, pp. 7302–7309 (1999).
- [40] Kaya S., Masiyama Y., The Magnetic Properties of Single Crystals of Nickel, Nature, vol. 120, pp. 951–952 (1927), DOI: 10.1038/120951a0.
- [41] Guyot M., Globus A., Determination of domain wall energy and the exchange constant from hysteresis in ferromagnetic polycrystals, J. Physique Colloque C1, vol. 38, pp. C1-157–C1-162 (1977).
- [42] Mager A., Über den Einfluß der Korngröße auf die Koerzitivkraft., Ann. Phys. Lpz., vol. 446, no. 1, pp. 15–16 (1952).
- [43] Rowlands G., The variation of coercivity with particle size, Journal of Physics D: Applied Physics, vol. 9, no. 8, pp. 1267–1269 (1976).
- [44] de Campos M.F., de Castro J.A., Predicting Recoil Curves in Stoner–Wohlfarth Anisotropic Magnets, Acta Physica Polonica A, vol. 136, no. 5, pp. 737–739 (2019).
- [45] Ratnam D.V., Buessem W.R., Angular Variation of Coercive Force in Barium Ferrite, Journal of Applied Physics, vol. 43, no. 3, pp. 1291–1293 (1972), DOI: 10.1063/1.1661260.
- [46] Martinek G., Kronmüller H., Influence of grain orientation of the coercive field in Fe-Nd-B permanent magnets, Journal of Magnetism and Magnetic Materials, vol. 86, nos. 2–3, pp. 177–183 (1990).
- [47] Katter M., Angular dependence of the demagnetization stability of sintered Nd-Fe-B magnets, IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3853–3855 (2005).
- [48] Chen C.W., Magnetism and Metallurgy of Soft Magnetic Materials, North-Holland Publishing Company: Elsevier North-Holland, 129 (1977).
- [49] de Campos M.F., Effect of Grain Size, Lattice Defects and Crystalline Orientation on the Coercivity of Sintered Magnets, Materials Science Forum, vols. 530–531, pp. 146–151 (2006), DOI: 10.4028/www.scientific.net/msf.530-531.146.
- [50] Kennelly A.E., Rationalised versus Unrationalised Practical Electromagnetic Units, Proceedings of the American Philosophical Society, vol. 70, no. 2, pp. 103–119 (1931).
- [51] The Giorgi System of Units, Nature, 134, 283 (1934), available at https://www.nature.com/articles/ 134283b0.
- [52] Goldfarb R.B., Electromagnetic Units, the Giorgi System, and the Revised International System of Units, IEEE Magnetics Letters, vol. 9, no. 1205905, pp. 1–5 (2018), DOI: 10.1109/LMAG.2018.2868654.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f24b7d86-bf72-4e65-993f-130fa8e56f25