Warianty tytułu
Experimental study on mechanical properties of concrete with marble dust
Języki publikacji
Abstrakty
Praca opiera się na analizie obszernego zbioru danych doświadczalnych dotyczących projektowania betonu i jego właściwości, w którym część kruszywa drobnego zastąpiono pyłem marmurowym. Przygotowano 30 rodzajów betonów, w sumie 180 próbek sześciennych. W badaniach zastosowano zmienne stosunki: woda/cement: 0,4, 0,45 i 0,5, pył marmurowy/piasek: 0, 0,05, 0,1, 0,15 i 0,2, superplastyfikator/cement: 0, 0,25, 0,5, 0,75 i 1 oraz dwa moduły uziarnienia piasku: FM = 2,4 i FM = 3.0. Zbadano 28-dniową wytrzymałość na ściskanie i głębokość penetracji wody. Wyniki badań wykazują, że zaproponowane składy można wykorzystać do projektowania betonów różnych klas, w zależności od oczekiwanych właściwości betonu.
This study aims to investigate the extensive test data on the mix design and mechanical properties of concrete by replacing parts of fine aggregates with marble dust. A full factorial experiment with 180 cubic samples of 30 mixes was used. The effects of water/cement ratio: 0.4, 0.45 and 0.5, marble dust/sand ratio: 0, 0.05, 0.1, 0.15 and 0.2, superplasticizer/cement ratio: 0, 0.25, 0.5, 0.75 and 1, and fineness modulus of sand [FM = 2.4 and FM = 3] on slump, 28-day compressive strength and depth of water penetration were determined. The results indicate that the proposed ratios can be used to enable the design of a concrete mix that corresponds to its required performance.
Czasopismo
Rocznik
Tom
Strony
316--329
Opis fizyczny
Bibliogr. 19 poz., il., tab.
Twórcy
autor
- Department of Civil Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
autor
- Department of Civil Engineering, Shahed University, Tehran, Iran, ar.habibi@shahed.ac.ir
autor
- Department of Civil Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
Bibliografia
- 1. S.C. Chang, C.C. Wang, H.Y. Wang, Study on the engineering and electricity properties of cement mortar added with waste LCD glass and piezoelectric powders. Comp. Concr. 21(3), 311-319 (2018).
- 2. M. Maher Al-Tayeb, B.H. Abu Bakar, H. Md Akil, H. Ismail, Experimental and numerical investigations of the influence of reducing cement by adding waste powder rubber on the impact behavior of concrete. Comput. Concr. 11(1), 63-73 (2013).
- 3. C. Roskos, T. White, M. Berry, Structural performance of self-cementitious fly ash concretes with glass aggregates. J. Struct. Eng. 141, B4014010 (10) (2015).
- 4. S.C. Ku, C.S. Poon, D. Chan, Influence of fly ash cement replacement on the properties of recycled aggregate concrete. J. Mater. Civ. Eng. 9, 709-717 (2007).
- 5. M. Nas, S. Kurbetci, Mechanical durability and microstructure properties of concrete containing natural zeolite.” Comp. Concr. 22(5), 449-459 (2018).
- 6. A. Niang, N. Roy, A. Tangit-Hamou, Structural behavior of concrete incorporating glass powder used in reinforced concrete columns. J. Struct. Eng. 141, B4014007 (10) (2014).
- 7. B.B. Jindal, D. Singhal, S. Sharma, Parveen, Enhancing mechanical and durability properties of geopolymer concrete with mineral admixture. Comput. Concr. 21(3), 345-353 (2018).
- 8. A.M. Knaack, Y.C. Kurama, Behavior of reinforced concrete beams with recycled concrete coarse aggregates. J. Struct. Eng. 141, B4014009 (12) (2014).
- 9. T.S. Shih, G.C. Lee, K.C. Chang, On static modulus of elasticity of normal-weight concrete J. Struct. Eng. 115(10), 2579-2587 (1989).
- 10. L. Nie, J. Xu, E. Bai, The research on static and dynamic mechanical properties of concrete under the environment of sulfate ion and chlorine ion. Comput. Concr. 20(2), 205-214 (2017).
- 11. J-F. Liang, E. Wang, X. Zhou, Q-L. Le, Influence of high temperature on mechanical properties of concrete containing recycled fine aggregate. Comput. Concr. 21(1), 87-94 (2018).
- 12. J.L. Gallias, R. Kara-Ali, J.P. Bigas, The Effect of Fine Mineral Admixtures on Water Requirement of Cement Pastes. Cem. Concr. Res. 30(10), 1543-1549 (2000).
- 13. H. Kato, A. Nakamura., H. Doi, T. Miyagawa, Strength Development and Autogenous Shrinkage of High-Flow Concrete with Marble dust. Zairyo/J. Soc. Mater. Sci. Japan, 50(5) 543-549 (2001).
- 14. B. Beeralingegowda, V.D. Gundakalle, The effect of addition of marble dust on the properties of self-compacting concrete. IJIRSET, 2(9) 4996 (2013).
- 15. ISIRI Number 389. Specification for Portland Cement. Institute of Standards and Industrial Research of Iran, 8th Edition, Iran (2017).
- 16. 9th issue of the national building regulations. Reinforced concrete structures codes. Iran Standard, 4th Edition, Iran (2013).
- 17. ASTM Standards: C33-03. Standard Specification for Concrete Aggregates. American Society for Testing and Materials (2003).
- 18. American Concrete Institute (ACI), Standard practice for selecting proportions for normal, heavyweight and mass concrete. ACI 211, American Concrete Institute, USA.
- 19. BS EN 12390-8:2019. Testing hardened concrete. Depth of penetration of water under pressure (2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f23c6fb6-0bb4-444b-88a7-51c8aca2fc3d