Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (14 ; 01-04.09.2019 ; Leipzig, Germany)
Języki publikacji
Abstrakty
Corporate reputation is an economic asset and its accurate measurement is of increasing interest in practice and science. This measurement task is difficult because reputation depends on numerous factors and stakeholders. Traditional measurement approaches have focused on human ratings and surveys, which are costly, can be conducted only infrequently and emphasize financial aspects of a corporation. Nowadays, online media with comments related to products, services, and corporations provides an abundant source for measuring reputation more comprehensively. Against this backdrop, we propose an information retrieval approach to automatically collect reputation-related text content from online media and analyze this content by machine learning-based sentiment analysis. We contribute an ontology for identifying corporations and a unique dataset of online media texts labelled by corporations' reputation. Our approach achieves an overall accuracy of 84.4%. Our results help corporations to quickly identify their reputation from online media at low cost.
Rocznik
Tom
Strony
43--46
Opis fizyczny
Bibliogr. 40 poz., tab.
Twórcy
autor
- Information Systems 2, University of Hohenheim, 70599 Stuttgart, Germany, achim.klein@unihohenheim.de
autor
- Information Systems 2, University of Hohenheim, 70599 Stuttgart, Germany, martin.riekert@unihohenheim.de
autor
- Information Systems 2, University of Hohenheim, 70599 Stuttgart, Germany, velizar.dinev@gmail.com
Bibliografia
- 1. A. Pharoah, “Corporate Reputation: The Boardroom Challenge,” Corp. Gov., vol. 3, no. 4, pp. 46–51, 2003. http://dx.doi.org/10.1108/14720700310497113
- 2. H. Shefrin and M. Statman, “Making sense of beta, size and book-to-market,” J. Portfolio Manage., vol. 21, no. 2, pp. 26–34, 1995. http://dx.doi.org/10.3905/jpm.1995.409506
- 3. H. Shefrin, “Do investors expect higher returns from safer stocks than from riskier stocks?,” J. Psychol. Financ. Market., vol. 2, no. 4, pp. 37–41, 2001. http://dx.doi.org/10.1207/S15327760JPFM0204_1
- 4. D. MacGregor, P. Slovic, D. Dreman, and M. Berry, “Imagery, affect, and financial judgment,” J. Psychol. Financ. Market, vol. 1, no. 2, pp. 104–110, 2000. http://dx.doi.org/10.1207/S15327760JPFM0102_2
- 5. S. Hammond and J. Slocum, “The impact of prior firm financial performance on subsequent corporate reputation,” J. Bus. Ethics, vol. 15, no. 2, pp. 159–165, 1996. https://doi.org/10.1007/BF00705584
- 6. M. Sobol and G. Farrelly, “Corporate reputation: A function of relative size or financial performance,” Rev. Bus. Econ. Res., vol. 24, no. 1, pp. 45–59, 1988.
- 7. P. Roberts and G. Dowling, “Corporate reputation and sustained superior financial performance,” Strateg. Manage. J., vol. 23, no. 12, pp. 1077–1093, 2002. http://dx.doi.org/10.1002/smj.274
- 8. J. Bloemer, K. De Ruyter, and P. Peeters, “Investigating drivers of bank loyalty: the complex relationship between image, service quality and satisfaction,” Int. J. Bank. Market., vol. 16, no. 7, pp. 276–286, 1998. https://doi.org/10.1108/02652329810245984
- 9. G. E. Fryxell and J. Wang, “The Fortune Corporate ‘Reputation’ Index: Reputation for What?,” J. Manage., vol. 20, no. 1, pp. 1–14, 1994. https://doi.org/10.1177/014920639402000101
- 10. S. Brown, B., Perry, “Removing the Financial Performance Halo from Fortune’s ‘Most Admired’ Companies,” Acad. Manage. J., vol. 37, no. 5, pp. 1347–1359, 1994. https://doi.org/10.5465/256676
- 11. V. Kubitscheck, “Business discontinuity – a risk too far,” Balance Sheet, vol. 9, no. 3, pp. 33–38, 2001. http://doi.org/10.1108/09657960110696032
- 12. C. J. Fombrun and C. B. M. van Riel, “The Reputational Landscape,” Corporate Reputation Review, vol. 1, no. 1, pp. 5–13, 1997. https://doi.org/10.1057/palgrave.crr.1540008
- 13. M. L. Barnett, J. M. Jermier, and B. Lafferty, “Corporate Reputation: The Definitional Landscape,” Corporate Reputation Review, vol. 9, no. 1, pp. 26–38, 2006. http://doi.org/10.1057/palgrave.crr.1550012
- 14. T. J. Brown, P. A. Dacin, M. G. Pratt, and D. . Whetten, “Identity, Intended Image, Construed Image, and Reputation: An Interdisciplinary Framework and Suggested Terminology,” J. Acad. Market. Sci., vol. 34, no. 2, pp. 99–106, 2006. http://doi.org/10.1177/0092070305284969
- 15. E. G. Love and M. Kraatz, “Character, Conformity, or the Bottom Line? How and Why Downsizing Affected Corporate Reputation,” Acad. Manage. J., vol. 52, no. 2, pp. 314–335, 2009. http://doi.org/10.5465/AMJ.2009.37308247
- 16. D. Lange, P. M. Lee, and Y. Dai, “Organizational Reputation: A Review,” J. Manage., vol. 37, no. 1, pp. 153–184, 2010. http://doi.org/10.1177/0149206310390963
- 17. P. Rhee, M., Haunschild, “The liability of good reputation: A study of product recalls in the US automobile industry,” Organization Science, vol. 17, no. 1, pp. 101–117, 2006. https://doi.org/10.1287/orsc.1050.0175
- 18. D. Basdeo, K. Smith, C. M. Grimm, V. P. Rindova, and P. J. Derfus, “The impact of market actions on firm reputation. Strateg. Manage,” Strateg. Manage. J., vol. 27, no. 12, pp. 1205–1219, 2006. http://doi.org/10.1002/smj.556
- 19. C. Fombrun and M. Shanley, “What’s in a Name? Reputation Building and Corporate Strategy,” Acad. Manage. J., vol. 33, no. 2, pp. 233–258, 1990. http://doi.org/10.2307/256324
- 20. S. J. Brammer and S. Pavelin, “Corporate Reputation and Social Performance: The Importance of Fit,” Journal of Management Studies, vol. 43, no. 3, pp. 435–455, 2006. https://doi.org/10.1111/j.1467-6486.2006.00597.x
- 21. C. Fombrun, “Corporate Reputation–its Measurement and Management,” Thexis, vol. 18, no. 4, pp. 23–26, 2001.
- 22. D. Turban, D., Greening, “Corporate Social Performance and Organizational Attractiveness to prospective employees,” Acad. Manage. J., vol. 40, no. 3, pp. 658–672, 1997. https://doi.org/10.5465/257057
- 23. D. Cable and M. Graham, “The determinants of job seekers’ reputation perceptions,” J. Organ. Behav., vol. 21, no. 8, pp. 929–947, 2000. https://doi.org/10.1002/1099-1379(200012)21:8<929::AID-JOB63>3.0.CO;2-O
- 24. V. Rindova and I. Williamson, “Being good or being known: An empirical examination of the dimensions, antecedents, and consequences of organizational reputation,” Acad. Manage. J., vol. 48, no. 6, pp. 1033–1049, 2005. https://doi.org/10.5465/amj.2005.19573108
- 25. G. Davies, R. Chun, and R. da Silva, “The personification metaphor as a measurement approach for corporate reputation,” Corporate Reputation Review, vol. 4, no. 2, pp. 113–127, 2001. https://doi.org/10.1057/palgrave.crr.1540137
- 26. B. Liu and Zhang, “A survey of opinion mining and sentiment analysis,” in Mining Text Data, 2012, pp. 415–463. https://doi.org/10.1007/978-1-4614-3223-4_13
- 27. A. Klein, O. Altuntas, T. Haeusser, and W. Kessler, “Extracting Investor Sentiment from Weblog Texts: A Knowledge-based Approach,” in 13th Conference on Commerce and Enterprise Computing IEEE, 2011, pp. 1–9. https://doi.org/10.1109/CEC.2011.10
- 28. A. Klein, O. Altuntas, M. Riekert, and V. Dinev, “A Combined Approach for Extracting Financial Instrument-Specific Investor Sentiment from Weblogs,” in 11th International Conference on Wirtschaftsinformatik, 2013, pp. 691–705.
- 29. F. Sebastiani, “Machine learning in automated text categorization,” ACM Computing Surveys, vol. 34, no. 1, pp. 1–47, Mar. 2002. https://doi.org/10.1145/505282.505283
- 30. T. Joachims, “Text categorization with support vector machines: Learning with many relevant features,” in 10th European Conference on Machine Learning, 1998, vol. 1398, no. 2, pp. 137–142. https://doi.org/10.1007/BFb0026683
- 31. D. Maynard et al., “Architectural elements of language engineering robustness,” Natural Language Engineering, vol. 8, pp. 257–274, 2002. https://doi.org/10.1017/S1351324902002930
- 32. N. O’Hare et al., “Topic-Dependent Sentiment Analysis of Financial Blogs,” in International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion Measurement, 2009, pp. 9–16. https://doi.org/10.1145/1651461.1651464
- 33. B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classification using machine learning techniques,” in Conference on Empirical Methods in Natural Language Processing, 2002, pp. 79–86. https://doi.org/10.3115/1118693.1118704
- 34. M. Riekert, J. Leukel, and A. Klein, “Online Media Sentiment: Understanding Machine Learning-Based Classifiers,” Proceedings of the 24th European Conference on Information Systems (ECIS), 2016.
- 35. H. Tang, S. Tan, and X. Cheng, “A survey on sentiment detection of reviews,” Expert Systems with Applications, vol. 36, no. 7, pp. 10760–10773, Sep. 2009. https://doi.org/10.1016/j.eswa.2009.02.063
- 36. J. L. Fleiss, “Measuring nominal scale agreement among many raters,” Psychological bulletin, vol. 76, no. 5, 1971. http://doi.org/10.1037/h0031619
- 37. B. Efron, “Estimating the error rate of a prediction rule: improvement on cross-validation,” Journal of the American Statistical Association, vol. 78, no. 382, pp. 316–331, 1983. https://doi.org/10.2307/2288636
- 38. R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” in Proceedings of the 14th International Joint Conference on Artificial Intelligence, 1995, pp. 1137–1143.
- 39. Y. Yang, “An evaluation of statistical approaches to text categorization,” Information retrieval, vol. 1, no. 1–2, pp. 69–90, 1999. https://doi.org/10.1023/A:1009982220290
- 40. R. Moraes, J. F. Valiati, and W. P. Gavião Neto, “Document-level sentiment classification: An empirical comparison between SVM and ANN,” Expert Systems with Applications, vol. 40, no. 2, pp. 621–633, Feb. 2013. https://doi.org/10.1016/j.eswa.2012.07.059
Uwagi
1. Track 1: Artificial Intelligence and Applications
2. Technical Session: 14th International Symposium Advances in Artificial Intelligence and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f22c2f38-9447-4adc-9e72-4d1af10a3147