Warianty tytułu
Języki publikacji
Abstrakty
[2-(3,4-epoxycyclohexyl) ethyl] triphenylsilane was synthesized, using triphenylsilane and 1,2-epoxy-4-vinylcyclohexane as the main raw materials. When the molar ratio of triphenylsilane to 1,2-epoxy-4-vinylcyclohexane was 1.0:1.2, the content of Wilkinson catalyst was 0.4%, the reaction temperature was 90°C, and the reaction time was 6 hours, the yield of [2-(3,4-epoxycyclohexyl) ethyl] triphenylsilane could reach 95.21%. The structure of the synthesized product was analyzed and characterized using FT-IR and 1H-NMR. The synthesized product was added to a bisphenol A-type epoxy resin (E-51) and a modified amine (593 amine) to prepare an adhesive. Then, the adhesive was poured into the mold and cured at 35°C for 8 hours. The cured sample exhibited the best performance when the ECETPS: E-51:593 amine molar ratio was 0.8:7.2:2. Thermal gravimetric analysis (TG) showed that the thermal stability of the cured samples increased relative to pure E-51 amine-cured samples with the synthesized product added. The mechanical properties of the samples were tested using a universal material testing machine, and the results showed a tensile strength of 37.95 MPa and a bending strength of 39.10 MPa.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
70--80
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- School of Physics and Materials, Nanchang University Nanchang, China
autor
- School of Physics and Materials, Nanchang University Nanchang, China, 2258845296@qq.com
autor
- School of Physics and Materials, Nanchang University Nanchang, China
autor
- School of Physics and Materials, Nanchang University Nanchang, China
autor
- School of Physics and Materials, Nanchang University Nanchang, China
Bibliografia
- [1] Paul S. Polyvalent lactams [P]. US19390308176, 1942-11-24.
- [2] Jules P, Adakonis AE, Nielsen AR. Plastic coated articles [P]. US19560574383, 1958-04-15.
- [3] Liu H, Wu X, Liu Y, et al. The curing characteristics and properties of bisphenol A epoxy resin/maleopimaric acid curing system [J]. J Mater Res Technol. 2022;21:1655–1665. https://doi.org/10.1016/j.jmrt.2022.10.008.
- [4] DD B, GE R, KC A, et al. Fluorescent aggregate structure revealed in bisphenol F epoxy thermoset [J]. Polymer. 2023;283. https://doi.org/10.1016/j.polymer. 2023.126217.
- [5] Narayanan R, Erik WC, Kim D-J, Søren K. Degradation mechanisms of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures [J]. Prog Org Coat. 2021;156. https://doi.org/10.1016/j.porgcoat.2021.106268.
- [6] Hengjie Z, Yao X, Peng C, et al. Robust natural polyphenolic adhesives against various harsh environments [J]. Biomacromolecules. 2022;23(8). https://doi.org/10.102 1/acs.biomac.2c00704.
- [7] Chen Z, Liu Z, Shen G, et al. Effect of chain flexibility of epoxy encapsulants on the performance and reliability of light-emitting diodes [J]. Ind Eng Chem Res. 2016;55(28):7635–7645. https://doi.org/10.1021/acs.ie cr.6b01159.
- [8] Isarn I, Gamardella F, Massagués L, et al. New epoxy composite thermosets with enhanced thermal conductivity and high T g obtained by cationic homopolymerization [J]. Polym Compos. 2018;39(S3). https://doi.org/10.1002/pc.24774.
- [9] QM I, KM MH, HA A, et al. Synthesis and evaluation of a novel polycarbonate grafted poly (glycidyl methacrylate) resin for sorption of 131I [J]. Radiat Phys Chem. 2023;206. https://doi.org/10.1016/j.radphyschem.2023.110774.
- [10] Chun H, Kim Y-J, Tak S-Y, et al. Preparation of ultralow CTE epoxy composite using the new alkoxysilyl-functionalized bisphenol A epoxy resin [J]. Polymer. 2018;135:241–250. https://doi.org/10.1016/j.polyme r.2017.11.048.
- [11] Yu C, Cheng J, Liu H, et al. Preparation and properties of organosilicon and castor-oil-modified rosin-based waterborne polyurethane coatings [J]. Ind Crops Prod. 2024;211:118230. https://doi.org/10.1016/j.indcrop.20 24.118230.
- [12] Jialong Z, Jieyuan Z, Yang H, et al. Facile fabricated transparent anti-smudge coating with high hardness and excellent flexibility from MTQ and branched silicone resins [J]. Prog Org Coat. 2023;185. https://doi.org/10.1016/j.porgcoat.2023.107907.
- [13] Junjie W, Kangxin F, Jinghua D, et al. Effect of organosilicon modified epoxy resin on slurry viscosity and mechanical properties of polyurethane grouting materials [J]. Constr Build Mater. 2023;387. https://doi.org/10.1016/j.conbuildmat.2023.131585.
- [14] Wei L, Li R, Huaqing L, et al. A novel hollow ZnO microspheres/organosilicone composite for potential application in electronic packaging fields [J]. Mater Sci Eng B. 2023;293. https://doi.org/10.1016/j.mseb.2 023.116483.
- [15] Chen C, Huang BW, Lu ZT, et al. Synthesis of a novel UV-curable prepolymer 1, 3-bis [(3-ethyl-3-methoxyoxetane) propyl] tetramethyldisiloxane and study on its UV-curing properties. Mater Sci-Pol. 2021;39(3):371–382. https://www.materialsscience.pwr.wroc.pl/.
- [16] Gao N, Liu W, Yan Z, Wang Z. Synthesis and properties of transparent cycloaliphatic epoxy–silicone resins for opto-electronic devices packaging [J]. Opt Mater. 2013;35(3):567–575. https://doi.org/10.1016/j.optm at.2012.10.023.
- [17] Zhou Y, Liu F, Wang H. Novel organic–inorganic composites with high thermal conductivity for electronic packaging applications: a key issue review [J]. Polym Compos. 2017;38(4):803–813. https://doi.org/10.100 2/pc.23641.
- [18] Qianqian Z, Zhenhao W, Hui Z, et al. Effects of graphene on various properties and applications of silicone rubber and silicone resin [J]. Compos Part A. 2021;142. https://doi.org/10.1016/j.compositesa.2020.106240.
- [19] Shang H, Dun C, Deng Y, et al. Bi 0.5 Sb 1.5 Te 3-based films for flexible thermoelectric devices [J]. J Mater Chem A. 2020;8(8):4552–4561. https://doi.org/10.103 9/C9TA13152C.
- [20] Jarosinski L, Rybak A, Gaska K, et al. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites [J]. Mater Sci-Pol. 2017;35(2):382–389. https://doi.org/10.1515/msp-2017-0028.
- [21] Liu R, Yan H, Zhang Y, et al. Cyanate ester resins containing Si-OC hyperbranched polysiloxane with favorable curing processability and toughness for electronic packaging [J]. Chem Eng J. 2022;433:133827. https://doi.org/10.1016/j.cej.2021.133827.
- [22] Gao N, Liu W, Yan Z, et al. Synthesis and properties of transparent cycloaliphatic epoxy–silicone resins for opto-electronic devices packaging [J]. Opt Mater. 2013;35(3):567–575. https://doi.org/10.1016/j.optm at.2012.10.023.
- [23] Liao F-Q, Chen Y-C. Siloxane-based epoxy coatings through cationic photopolymerization for corrosion protection [J]. Prog Org Coat. 2023;174:107235. https://doi.org/10.1016/j.porgcoat.2022.107235.
- [24] Stephen A. Rhodium catalyst and siloxane coating composition containing the same [P]. EP92303264, 1992-10-28.
- [25] Fehn A, Weidinger J. Use of rhodium-crosslinking silicone elastomers for producing baking molds [P]. US20030631161, 2004-02-05.
- [26] Dobrynin MV, Pretorius C, Kama DV, et al. Rhodium (I)-catalysed cross-linking of polysiloxanes conducted at room temperature [J]. J Catal. 2019;372:193–200. https://doi.org/10.1016/j.jcat.2019.03.004.
- [27] Jahanshahi S, Pizzi A, Abdulkhani A, et al. MALDI-TOF, 13 C NMR and FT-MIR analysis and strength characterization of glycidyl ether tannin epoxy resins [J]. Ind Crops Prod. 2016;83:177–185. https://doi.org/10.1016/j.indcrop.2015.11.067.
- [28] Kareem A, Rasheed H. Electrical and thermal characteristics of MWCNTs modified carbon fiber/epoxy composite films [J]. Mater Sci-Pol. 2019;37(4):622–627. https://doi.org/10.2478/msp-2019-0081.
- [29] Popardovská E, Popardovský V, Danko J. Study of interaction water with epoxy resin – impact on mechanical properties of glass/epoxy laminate [J]. Stroj cas-J Mech Eng. 2023;73(1):147–158. https://doi.org/10.2478/scjm e-2023-0012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f1f6f0a5-b326-4f48-9404-fc63b3fcc1d7