Czasopismo
2018
|
Vol. 18, no. 3
|
833--843
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an improved method to analyze the collapse mechanism of steel moment frames based on structural vulnerability theory (SVT), in which the failure processes of the essential components are defined according to the damage characteristics of their ductile and brittle members. The improved method can accurately identify possible collapse modes of steel moment frames, because the transformation processes of such connections as beam-column joints and support joints from rigid connections to pinned ones were considered. Structural vulnerability analysis is performed on a 4-story steel frame structure by using the improved method, the results show that the collapse caused by joint failure in the first story had the maximum vulnerability index, so that the weakness of the steel frame may be located in the first story; while the collapse behaving as a “beam plastic hinge” failure, as an expected failure mode, had the minimum value. Moreover, the improved method was validated by a shaking table test due to the consistence between the experimental results and the collapse modes calculated to have the maximum vulnerability index, which demonstrates that such improved method could be effectively to predict the collapse modes of steel frame structures.
Czasopismo
Rocznik
Tom
Strony
833--843
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab., wykr.
Twórcy
autor
- State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China, yejihong@seu.edu.cn
autor
- The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, Jiangsu Province 210018, China, jlq_1992@hotmail.com
Bibliografia
- [1] J. Baker, M. Schubert, M.H. Faber, On the assessment of robustness, Struct. Saf. 30 (3) (2008) 253–267.
- [2] A. Formisano, R. Landolfo, F.M. Mazzolani, Robustness assessment approaches for steel framed structures under catastrophic events, Comput. Struct. 147 (2015) 216–228.
- [3] J. Agarwal, D.I. Blockley, N.J. Woodman, Vulnerability of structural systems, Struct. Saf. 25 (3) (2003) 263–286.
- [4] X. Wu, D.I. Blockley, N.J. Woodman, Vulnerability analysis of structural systems part I: rings and clusters, Civil Eng. Syst. 10 (4) (1993) 301–317.
- [5] X. Wu, D.I. Blockley, N.J. Woodman, Vulnerability analysis of structural systems part II: failure scenarios, Civil Eng. Syst. 10 (4) (1993) 319–333.
- [6] Z. Lu, Y. Yu, N.J. Woodman, D.I. Blockley, A theory of structural vulnerability, Struct. Eng. Int. 77 (18) (1999) 17–24.
- [7] J. Agarwal, D.I. Blockley, N.J. Woodman, Vulnerability of 3- dimensional trusses, Struct. Saf. 23 (3) (2001) 203–220.
- [8] A. Murta, J. Pinto, H. Varum, Structural vulnerability of two traditional Portuguese timber structural systems, Eng. Fail. Anal. 18 (2) (2011) 776–782.
- [9] J.H. Ye, W.Z. Liu, R. Pan, Research on failure scenarios of domes based on form vulnerability, Sci. China Ser. E 54 (11) (2011) 2834–2853.
- [10] N.H. Zhu, J.H. Ye, Structural vulnerability of a single-layer dome based on its form, J. Eng. Mech. 140 (1) (2014) 112–127.
- [11] W.Z. Liu, J.H. Ye, Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm, J. Construct. Steel Res. 97 (1) (2014) 59–68.
- [12] J.H. Ye, L.Q. Jiang, X.X. Wang, Seismic failure mechanism of reinforced cold-formed steel shear wall based on structural vulnerability analysis, Appl. Sci. 7 (2) (2017) 182–191.
- [13] U. Starossek, Typology of progressive collapse, Eng. Struct. 29 (9) (2007) 2302–2307.
- [14] E. Brunesi, R. Nascimbene, F. Parisi, N. Augenti, Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis, Eng. Struct. 104 (12) (2015) 65–79.
- [15] T. Kim, J. Kim, Collapse analysis of steel moment frames with various seismic connections, J. Construct. Steel Res. 65 (6) (2009) 1316–1322.
- [16] M. Nakashima, T. Matsumiya, K. Suita, D. Liu, Test on full-scale three-storey steel moment frame and assessment of ability of numerical simulation to trace cyclic inelastic behavior, Earthq. Eng. Struct. Dyn. 35 (3) (2006) 3–19.
- [17] S. Yamada, K. Suita, M. Tada, K. Kasai, Y. Matsuoka, Y. Shimada, Collapse experiment on 4-story steel moment frame: Part 1 outline of test results, in: Proc. 14th World Conf. On Earthquake Engineering, China Earthquake Administration, Ministry of Housing and Urban-Rural Development, Beijing, China, 2006.
- [18] V.R.M. Challa, J.F. Hall, Earthquake collapse analysis of steel frames, Earthq. Eng. Struct. Dyn. 23 (11) (2010) 1199–1218.
- [19] Y.J. Yu, K.C. Tsai, Y.T. Weng, B.Z. Lin, J.L. Lin, Analytical studies of a full-scale steel building shaken to collapse, Eng. Struct. 32 (10) (2010) 3418–3430.
- [20] D.G. Lignos, H. Krawinkler, A. Whittaker, Prediction and validation of sidesway collapse of two scale models of a 4- story steel moment frame, Earthq. Eng. Struct. Dyn. 40 (7) (2011) 807–825.
- [21] D.G. Lignos, H. Krawinkler, Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading, J. Struct. Eng. 137 (11) (2011) 1291–1302.
- [22] D.G. Lignos, T. Hikino, Y. Matsuoka, M. Nakashima, Collapse assessment of steel moment frames based on e-defense full-scale shake table collapse tests, J. Struct. Eng. 139 (1) (2013) 120–132.
- [23] M.C. Romos, G. Mosqueda, M.J. Hashemi, Large-scale hybrid simulation of a steel moment frame building structure through collapse, J. Struct. Eng. 142 (1) (2016) 04015086.
- [24] J.P. Judd, F.A. Charney, Seismic collapse prevention system for steel-frame buildings, J. Construct. Steel Res. 118 (2016) 60–75.
- [25] Y. Yu, X.Y. Zhu, Nonlinear dynamic collapse analysis of semi-rigid steel frames based on the finite particle method, Eng. Struct. 118 (7) (2016) 383–393.
- [26] Y.T. Bai, Y.D. Shi, K.L. Deng, Collapse analysis of high-rise steel moment frames incorporating deterioration effects of column axial force-bending moment interaction, Eng. Struct. 127 (11) (2016) 402–415.
- [27] S.W. Han, T.O. Kim, D.H. Kim, S.J. Baek, Seismic collapse performance of special moment steel frames with torsional irregularities, Eng. Struct. 141 (6) (2017) 482–494.
- [28] B. Shekastehband, A. Azaraxsh, H. Showkati, Experimental and numerical study on seismic behavior of LYS and HYS steel plate shear walls connected to frame beams only, Arch. Civil Mech. Eng. 17 (1) (2017) 154–168.
- [29] L.Q. Jiang, H. Zheng, Y. Hu, Experimental seismic performance of steel- and composite steel-panel wall strengthened steel frames, Arch. Civil Mech. Eng. 17 (3) (2017) 520–534.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f1b28f76-e3b8-4ce4-af53-4ce434728d2e