Warianty tytułu
Badania in vitro kompozytów gipsowo-hydroksyapatytowych
Języki publikacji
Abstrakty
The paper is focused on the preparation and characterization of calcium sulfate gypsum-based materials modified with hydroxyapatite of natural origin. To search for new bioactive materials, calcium sulfate gypsum Stodent III Arti was mixed with hydroxyapatite obtained in the three-step preparation process including hydrolysis, pre-calcination, and calcination of bones. Such-obtained material was characterized by X-ray diffractometry and Fouriertransform infrared spectroscopy. Additionally, the microstructure and chemical composition of the prepared composite materials were investigated with a scanning electron microscope equipped with an energy dispersive spectrometer detector. Moreover, the influence of the hydroxyapatite content in the materials on their in vitro degradation in storage solutions including artificial saliva, Ringer’s solution, and simulated body fluid was examined. A comparison of the degradation of gypsum composites demonstrated that in vitro stability is dependent on hydroxyapatite content. The samples' weight changes indicate hydroxyapatite addition results in increased degradation of prepared composite materials. Moreover, the imaging of the samples confirmed the formation of finely-crystalline apatite precipitate on the surface of the materials during immersion in incubation fluids.
W pracy przedstawiono charakterystykę materiałów na bazie gipsu modyfikowanych hydroksyapatytem pochodzenia naturalnego. Hydroksyapatyt uzyskano w trzyetapowym procesie obejmującym hydrolizę, prekalcynację i kalcynację kości. Otrzymane materiały scharakteryzowano metodą dyfraktometrii rentgenowskiej i spektroskopii w podczerwieni z transformatą Fouriera. Dodatkowo zbadano mikrostrukturę i skład chemiczny wytworzonych materiałów kompozytowych za pomocą skaningowego mikroskopu elektronowego wyposażonego w rentgenowski spektrometr z dyspersją energii. Ponadto zbadano wpływ zawartości hydroksyapatytu w materiałach na ich degradację in vitro w płynach symulujących środowisko organizmu, takich jak sztuczna ślina, roztwór Ringera i symulowany płyn ustrojowy SBF. Porównanie degradacji kompozytów wykazało, że stabilność in vitro jest zależna od zawartości hydroksyapatytu. Analiza zmiany masy próbek w czasie inkubacji wskazała, że dodatek hydroksyapatytu powoduje zwiększoną degradację przygotowanych materiałów kompozytowych. Ponadto obrazowanie próbek potwierdziło powstawanie drobnokrystalicznego apatytu na powierzchni materiałów podczas inkubacji w płynach symulujących środowisko organizmu.
Czasopismo
Rocznik
Tom
Strony
21--26
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
autor
- Katedra Inżynierii Materiałowej i Fizyki, Politechnika Krakowska, wioletta.florkiewicz@pk.edu.pl
autor
- Katedra Inżynierii Materiałowej i Fizyki, Politechnika Krakowska
autor
- Katedra Technologii Chemicznej i Analityki Środowiskowe, Politechnika Krakowska
autor
- Katedra Technologii Chemicznej i Analityki Środowiskowe, Politechnika Krakowska
Bibliografia
- 1. Ortman J.M, Velkoff V.A., Hogan H.: An aging nation. The older population in the United States. Current Population Report: ;2014)P25-1140.
- 2. Vincent G., Velkoff V.A.: The next four decades the older population in the United States: 2010 to 2050 (2010) P25-1138.
- 3. Sobczak-Kupiec A., Kijkowska R., Malina D.: Infusion of Ag-ion rom agueous solution into solid calciunn phosphate of hydroxyapatite (HA) crystal structure. Journal of the American Ceramic Society 99 (9) (2016) 3129-35.
- 4. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E.: Biomaterials science 3rd edition. An introduction to materials in medicine. Academic Press (2012).
- 5. Burdick J.A., Mauck R.L.: Biomaterials for tissue engineering applications. A review of the past and future trends. , Springer—Verlag,Wien(2011).
- 6. Best S.M., Porter A.E., Thian E.S., Huang J.: Bioceramics. Past, Dresent and for the future. Journal of the European Ceramic Society 28 (7) (2008) 1319-27.
- 7. Bosco R., Van Den Beucken J.V., Leeuwenburgh S., Jansen J.: Surface engineering for bone implants: A trend from passive to active surfaces. Coatings 2 (3) (2012) 95-119.
- 8. Yano K., Namikawa T., Uemura T, Hoshino M., Wakitani S., Takaoka K., Nakamura H.: Regenerative repair of bone defects with osteoinductive hydroxyapatite fabricated to match the defect md implanted with combined use of computer-aided design, computer-aided manufacturing, and computer-assisted surgery systems: A feasibility study in a canine model. Journal of Orthopaedic Science. Official Journal of the Japanese Orthopaedic Association 17 (4) (2012) 484-489.
- 9. Weiss D.J., Bates J.H.T, Gilbert T., Liles W.C, Lutzko C. Rajagopal J., Prockop D.: Stem cells and cell therapies in lung biology and diseases: Conference report. Annals of the American Thoracic Society 10 (5) (2010) S25-S44.
- 10. Macmillan A.K., Lamberti F.V., Moulton J.N., Geilich B.M., Webster T.J.: Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone. International Journal of Nanomedicine 9 (2014) 5627-37
- 11. Dutta S.R., Passi D., Singh P, Bhuibhar A.: Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Irish Journal of Medical Science 184 (1) (2015) 101-6.
- 12. Teoh S.H.: Fatigue of biomaterials: A review. International Journal of Fatigue 22 (2000) 825-37.
- 13. Kobayashi S., Murakoshi T.: Characterization of mechchanical iroperties and bioactivity of hydroxyapatite/B-tricalcium phosphate omposites. Advanced Composite Materials 23 (2) (2014) 163-77
- 14. Sobczak-Kupiec A., Malina D., Piątkowski M., Krupa-Żuczek K., Wzorek Z., Tyliszczak B.: Physicochemical and biological properties of hydrogel/gelatin/ hydroxyapatite PAA/G/HAp/AgNPs composites modified with silver nanoparticles. Journal of Nanoscience and Nanotechnology 12 (12) (2012) 9302-11.
- 15. Sobczak-Kupiec A., Olender E., Malina D., Tyliszczak B. Effect of calcination parameters on behawior of bone hydroxyapatite in artificial saliva and its biosafety. Materials Chemistry and Physics 206(2018)158-155.
- 16. Dunne C. F, Twomey B., Kelly C, Simpson J.C, Stanton K.T.: Hydroxyapatite and fluorapatite coatings on dental screws. Effects of blast coating process and biological response. Journal of Materials science. Materials in Medicine 26 (1) (2015) 1-14.
- 17. Boyd A.R., Rutledge L., Randolph L.D., Mutreja I., Meenan B.J.: The deposition of strontium-substituted hydroxyapatite coatings. Engineering and Nano-engineering Approaches for Medical Devices 26 (65) (2015) 1-14.
- 18. Luchanek K., Bartkowiak A., Gdowik A., Perzanowski M., Kąc S., Dzaraniec B., Suchanek M., Marszałek M.; Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on nodified titanium substrates. Materials Science and Engineering: C 51 (2015) 57-63.
- 19. Larsson A., Andersson M., Wigren S., Pivodic A., Flynn M., Nanimark U.: Soft tissue integration of hydroxyapatite-coated abutnents for bone conduction implants. Clinical Implant Dentistry md Related Research 17 (1999) e730-5.
- 20. Vahabzadeh S., Roy M., Bandyopadhyay A., Bose S.: Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Actć iomaterialia 17 (2015) 47-55.
- 21. Zhang B.G.X., Myers D.E, Wallace G.G., Brandt M., Choong P.F.M.:iioactive coatings for orthopaedic implants-recent trends in development of implant coatings. International Journal of Molecular Sciences 15 (7) (2014) 11878-11921.
- 22. Gambardella A., Bianchi M., Kaciulis S., Mezzi A., Brucale M., Cavallini M., Herrmannsdoerfer T, Chanda G., Uhlarz M., Cellini A., Pedna M.F, Sambri V., Marcacci M., Russo A.: Magnetic iydroxyapatite coatings as a new tool in medicine. A scanning probe investigation. Materials Science & Engineering C 62 (2016) 444-9.
- 23. Ciuca S., Badea M., Pozna E., Pana I., Kiss A., Floroian L Semelescu A., Cotrut CM., Mogą M., Yladescu A.: Evaluation of Ag mtaining hydroxyapatite coatings to the Candida albicans infection. Journal of Microbiological Methods 125 (2016) 12-18.
- 24. Son J.S., Choi Y.A., Park E.K., Kwon TY, Kim K.H., Lee K.E K.B.: D ruglelivery from hydroxyapatite-coated titaniu surfaces using biodegradable particie ;arriers. Journal of Biomedical Materials Research. Part B, Applied Biomaterials 101 (2) (2013) 247-57
- 25. Yang YH., Liu C.H., Liang YH., Lin RH., Wu K.C.W.: Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced rug loading and pH-responsive release properties for intraceliular drug delivery Journal of Materials Chemistry B 19 (2013) 2447-2450.
- 26. Ibrabim A.R., Li X., Zhou Y, Huang Y, Chen W., Wang H., Li J.: Synthesis of spongy-like mesoporous hydroxyapatite from raw waste eggshells for enhanced dissolution of ibuprofen loaded via supercritical CO2 Int. J. Mol. Sci. 16 (4) (2015) 7960-7975.
- 27. Haider A., Gupta K.C, Kang I.K.: PLGA/nH A hybrid nanofiber scafold as a nanocargo carrier of insulin for accelerating bone tissue egeneration. Nanoscale Research Letters 9 (1) (2014) 1-12.
- 28. Son J.S., Appleford M., Ong J.L., Wenke J.C, Kim J.M., Choi S.H. Oh D.S.: Porous hydroxyapatite scaffold with three-dimensionionai localized drug delivery system using biodegradable microspheres. Journal of Controlled Release 153 (2011) 133-140.
- 29. Palmer L.C, Newcomb C.J., Kaitz S.R., Spoerke E.D., Stupp S.I.:Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews 108 (11) 4754-4783.
- 30. Kumar A., Sanghavi R., Mohandas V.R: Solubilitypattern of CaSC4∙2H2O in the system NaCI + CaCI2 + H2O and solution densitie at 35°C. Non-ideality and ion pairing. Journal of Chemical & Engineering Data 52 (3) (2007) 902-905.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f1b28c03-c3ff-42e9-a84a-3d3cafb8d8cd