Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 2 | 226--237
Tytuł artykułu

Screw Extrusion as a Scalable Technology for Manufacturing Polylactide Composite with Graphene Filler

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of carbon nanomaterials as fillers in the process of obtaining polymer composites by extrusion poses many problems. The high agglomeration ability and low bulk density of carbon nanomaterials do not allow to easy production of composites characterized by very good dispersion of the filler in the polymer matrix, which is required to obtain a high-quality product. The advantage of this type of fillers is that the improvement of the composite properties can be achieved even at a low degree of filling. In this article, we describe a method for obtaining polylactide composites with a nanofiller in the form of graphene nanoplatelets. To overcome the difficulties associated with the use of graphene, we divided the process of obtaining composites into two stages. In the first stage, we made a masterbatch containing 25 wt.% graphene, from which, in the second stage, we obtained target composites containing from 0.1 to 2 wt.% graphene. A twin-screw extruder was used in both stages. The tested filling levels had no significant impact on the recorded processing parameters. The composites obtained by the described method are characterized by good dispersion of graphene. However the graphene agglomerates can be observed in the polymer matrix. Composites were tested by SEM, FTIR, DSC and MFR methods. Mechanical tests such as static tension, three-point bending, impact strength showed that the addition of 0.5 wt% of graphene improves tensile strength by 10 %, Young's modulus by 19 % and both flexural strength and flexural modulus by 15 %. The carbon filler has an impact on crystallization process of the polymer matrix by acting as a nucleating agent.
Słowa kluczowe
Wydawca

Rocznik
Strony
226--237
Opis fizyczny
Bibliogr. 65 poz., fig., tab.
Twórcy
  • Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, ul. Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland, aneta.kaczor@impib.lukasiewicz.gov.pl
  • Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, ul. Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland, gdomek@ukw.edu.pl
  • Faculty of Physics, Kazimierz Wielki University, ul. Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland, pawelsz@ukw.edu.pl
Bibliografia
  • 1. Babu RP, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Prog Biomater. 2013; 2(1): 8.
  • 2. Carothers WH, Dorough GL, Natta FJV. Studies of polymerization and ring formation. The reversible polymerization of six-membered cyclic esters. J am chem soc. 1932; 54(2): 761–72.
  • 3. Trivedi AK, Gupta MK, Singh H. PLA based biocomposites for sustainable products: A review. Advanced Industrial and Engineering Polymer Research. 2023; 6(4): 382–95.
  • 4. Androsch R, Schick C, Di Lorenzo ML. Kinetics of nucleation and growth of crystals of poly(l-lactic acid). Advances in Polymer Science. 2018; 279: 235–272.
  • 5. Kawai F. Polylactic Acid (PLA)-degrading microorganisms and PLA depolymerases. ACS Symposium Series. 2010; 1043: 405–414.
  • 6. Avinc O, Khoddami A. Overview of poly(lactic acid) (PLA) fibre. Fibre Chem. 2009; 41(6): 391–401.
  • 7. Prasanth SM, Kumar PS, Harish S, Rishikesh M, Nanda S, Vo DVN. Application of biomass derived products in mid-size automotive industries: a review. Chemosphere. 2021; 280: 130723.
  • 8. Barillari F, Chini F. Biopolymers - sustainability for the automotive value-added chain. ATZ Worldw. 2020; 122(11): 36–39.
  • 9. Knoch S, Pelletier F, Larose M, Chouinard G, Dumont MJ, Tavares JR. Surface modification of PLA nets intended for agricultural applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020; 598: 124787. 10. Fahim IS, Chbib H, Mahmoud HM. The synthesis, production & economic feasibility of manufacturing PLA from agricultural waste. Sustainable Chemistry and Pharmacy. 2019; 12: 100142.
  • 11. DeStefano V, Khan S, Tabada A. Applications of PLA in modern medicine. Engineered Regeneration. 2020; 1: 76–87.
  • 12. Davachi SM, Kaffashi B. Polylactic acid in medicine. Polymer-Plastics Technology and Engineering. 2015; 54(9): 944–967.
  • 13. Mattana G, Briand D, Marette A, Vásquez Quintero A, de Rooij NF. Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Organic Electronics 2015; 17: 77–86.
  • 14. Shi X, Dai X, Cao Y, Li J, Huo C, Wang X. Degradable poly(lactic acid)/metal–organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind Eng Chem Res. 2017; 56(14): 3887–3894.
  • 15. Shao L, Xi Y, Weng Y. Recent advances in PLA-based antibacterial food packaging and its applications. Molecules. 2022; 27(18): 5953.
  • 16. Swetha TA, Bora A, Mohanrasu K, Balaji P, Raja R, Ponnuchamy K. A comprehensive review on polylactic acid (PLA) – synthesis, processing and application in food packaging. International Journal of Biological Macromolecules. 2023; 234: 123715.
  • 17. Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, Saba N. Natural fiber reinforced polylactic acid composites: a review. Polymer Composites. 2019; 40(2): 446–463.
  • 18. Rajeshkumar G, Arvindh Seshadri S, Devnani GL, Sanjay MR, Siengchin S, Prakash Maran J. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review. Journal of Cleaner Production. 2021; 310: 127483. 19. Sun Y, Zheng Z, Wang Y, Yang B, Wang J, Mu W. PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties. J Polym Res. 2022; 29(10): 422.
  • 20. Olaiya NG, Surya I, Oke PK, Rizal S, Sadiku ER, Ray SS. Properties and characterization of a PLAchitin–starch biodegradable polymer composite. Polymers. 2019; 11(10): 1656.
  • 21. Fu Z, Cui J, Zhao B, Shen SGF, Lin K. An overview of polyester/hydroxyapatite composites for bone tissue repairing. Journal of Orthopaedic Translation. 2021; 28: 118–130.
  • 22. Shahdan D, Rosli NA, Chen RS, Ahmad S, Gan S. Strategies for strengthening toughened poly(lactic acid) blend via natural reinforcement with enhanced biodegradability: a review. International Journal of Biological Macromolecules. 2023; 251: 126214.
  • 23. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B. 2004; 108(52): 19912–19916.
  • 24. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV. Electric field effect in atomically thin carbon films. Science. 2004; 306(5696): 666–669.
  • 25. Boehm HP, Setton R, Stumpp E. Nomenclature and terminology of graphite intercalation compounds. Carbon. Pergamon. 1986; 24: 241–245.
  • 26. Wallace PR. The band theory of graphite. Phys Rev. 1947; 71(9): 622–634.
  • 27. Gerstner E. Nobel Prize. Andre Geim & Konstantin Novoselov. Nature Phys. 2010; 6(11): 836–836.
  • 28. Duplock EJ, Scheffler M, Lindan PJD. Hallmark of perfect graphene. Phys Rev Lett. 2004; 92(22): 225502.
  • 29. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett. 2008; 100(1): 016602.
  • 30. Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 2011; 10(8): 569–581.
  • 31. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008; 8(8): 2458–2462.
  • 32. Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene. Applied Physics Letters. 2007; 91(16): 163513.
  • 33. Norazlina H, Kamal Y. Graphene modifications in polylactic acid nanocomposites: a review. Polym Bull. 2015; 72(4): 931–961.
  • 34. Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon. 2011; 49(1): 198–205.
  • 35. Sanes J, Sánchez C, Pamies R, Avilés MD, Bermúdez MD. Extrusion of polymer nanocomposites with graphene and graphene derivative nanofillers: an overview of recent developments. Materials. 2020; 13(3): 549.
  • 36. Batakliev T, Georgiev V, Kalupgian C, Muñoz PAR, Ribeiro H, Fechine GJM. Physico-chemical characterization of PLA-based composites holding carbon nanofillers. Appl. Compos. Mater. 2021; 28(4): 1175–1192.
  • 37. Kang H, Kim DS. A study on the crystallization and melting of PLA nanocomposites with cellulose nanocrystals by DSC. Polymer Composites. 2023; 44(11): 7727–7736.
  • 38. Standard PN-EN ISO 11357-(1-3):2016-2020 Tworzywa sztuczne - różnicowa kalorymetria skaningowa (DSC); Część 1: zasady ogólne; Część 2: wyznaczanie temperatury zeszklenia i stopnia przejścia w stan szklisty; Część 3: oznaczanie temperatury oraz entalpii topnienia i krystalizacji. Polish Committe for Standardization 2016–2020.
  • 39. Standard PN-EN ISO 1133-1:2011 Tworzywa sztuczne - oznaczanie masowego wskaźnika szybkości płynięcia (MFR) i objętościowego wskaźnika szybkości płynięcia (MVR) tworzyw termoplastycznych - Część 1: metoda standardowa. Polish Committe for Standardization 2011.
  • 40. Standard PN-EN ISO 294-1:2017 Tworzywa sztuczne - wtryskiwanie kształtek do badań z tworzyw termoplastycznych; Część 1: zasady ogólne, formowanie uniwersalnych kształtek do badań i kształtek w postaci beleczek. Polish Committe for Standardization 2017.
  • 41. Standard PN-EN ISO 527-1:2020-01 Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu; Część 1: zasady ogólne; Część 2: warunki badań tworzyw sztucznych przeznaczonych do prasowania wtrysku i wytłaczania. Polish Committe for Standardization 2012-2020.
  • 42. Standard PN-EN ISO 179-1:2010 Tworzywa sztuczne. Oznaczanie udarności metodą Charpy’ego; Część 1: badanie nieinstrumentalne. Polish Committe for Standardization 2010.
  • 43. Kotsilkova R, Tabakova S, Ivanova R. Effect of graphene nanoplatelets and multiwalled carbon nanotubes on the viscous and viscoelastic properties and printability of polylactide nanocomposites. Mech Time-Depend Mater. 2022; 26(3): 611–32.
  • 44. Yadav N, Nain L, Khare SK. Studies on the degradation and characterization of a novel metal-free polylactic acid synthesized via lipase-catalyzed polymerization: a step towards curing the environmental plastic issue. Environmental Technology & Innovation. 2021; 24: 101845.
  • 45. Yuniarto K, Purwanto YA, Purwanto S, Welt BA, Purwadaria HK, Sunarti TC. Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conference Proceedings. 2016; 1725(1): 020101.
  • 46. Kister G, Cassanas G, Vert M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer. 1998; 39(2): 267–273.
  • 47. Amorin NSQS, Rosa G, Alves JF, Gonçalves SPC, Franchetti SMM, Fechine GJM. Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. Journal of Applied Polymer Science. 2014; 131(6): 40023.
  • 48. Adesina OT, Sadiku ER, Jamiru T, Ogunbiyi OF, Adesina OS. Thermal properties of spark plasma -sintered polylactide/graphene composites. Materials Chemistry and Physics. 2020; 242: 122545.
  • 49. Ucpinar Durmaz B, Aytac A. Enhanced mechanical and thermal properties of graphene nanoplatelets-reinforced polyamide11/poly(lactic acid) nanocomposites. Polymer Engineering & Science. 2023; 63(1): 105–117.
  • 50. Kotsilkova R, Petrova-Doycheva I, Menseidov D, Ivanov E, Paddubskaya A, Kuzhir P. Exploring thermal annealing and graphene-carbon nanotube additives to enhance crystallinity, thermal, electrical and tensile properties of aged poly(lactic) acid-based filament for 3D printing. Composites Science and Technology. 2019; 181: 107712.
  • 51. Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z, et al. Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer. 2010; 51(3): 730–737.
  • 52. Usachev SV, Lomakin SM, Koverzanova EV, Shilkina NG, Levina II, Prut EV. Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D pyrolysis products. Thermochimica Acta. 2022; 712: 179227.
  • 53. Ahmed J, Mulla MZ, Vahora A, Bher A, Auras R. Polylactide/graphene nanoplatelets composite films: impact of high-pressure on topography, barrier, thermal, and mechanical properties. Polymer Composites. 2021; 42(6): 2898–909.
  • 54. Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R. Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal. 2013; 49(11): 3630–3641.
  • 55. Luyt AS, Gasmi S. Influence of blending and blend morphology on the thermal properties and crystallization behaviour of PLA and PCL in PLA/PCL blends. J Mater Sci. 2016; 51(9): 4670–4681.
  • 56. Aliotta L, Gigante V, Geerinck R, Coltelli MB, Lazzeri A. Micromechanical analysis and fracture mechanics of poly(lactic acid) (PLA)/polycaprolactone (PCL) binary blends. Polymer Testing. 2023; 121: 107984.
  • 57. Kumar S, Ramesh MR, Doddamani M, Rangappa SM, Siengchin S. Mechanical characterization of 3D printed MWCNTs/HDPE nanocomposites. Polymer Testing. 2022; 114: 107703.
  • 58. Mysiukiewicz O, Barczewski M, Skórczewska K, Matykiewicz D. Correlation between processing parameters and degradation of different polylactide grades during twin-screw extrusion. Polymers. 2020; 12(6): 1333.
  • 59. Kashi S, Gupta RK, Kao N, Hadigheh SA, Bhattacharya SN. Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices. Journal of Materials Science & Technology. 2018; 34(6): 1026–1034.
  • 60. Spinelli G, Kotsilkova R, Ivanov E, Petrova-Doycheva I, Menseidov D, Georgiev V. Effects of filament extrusion, 3D printing and hot-pressing on electrical and tensile properties of poly(Lactic) acid composites filled with carbon nanotubes and graphene. Nanomaterials. 2020; 10(1): 35.
  • 61. Ren F, Li Z, Xu L, Sun Z, Ren P, Yan D. Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties. Composites Part B: Engineering. 2018; 155: 405–413.
  • 62. Gonçalves C, Pinto A, Machado AV, Moreira J, Gonçalves IC, Magalhães F. Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets. Polymer Composites. 2018; 39(S1): E308–20.
  • 63. Nimbagal V, Banapurmath NR, Sajjan AM, Patil AY, Ganachari SV. Studies on hybrid bio-nanocomposites for structural applications. J of Materi. Eng. and Perform. 2021; 30(9): 6461–6480.
  • 64. Zou H, Yi C, Wang L, Liu H, Xu W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim. 2009; 97(3): 929–935.
  • 65. Beauson J, Schillani G, Van der Schueren L, Goutianos S. The effect of processing conditions and polymer crystallinity on the mechanical properties of unidirectional self-reinforced PLA composites, Composites Part A: Applied Science and Manufacturing. 2022; 152: 106668.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f14a2ef5-a843-4941-bfb3-dbb8edd56b58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.