Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 50, nr 1 | 130--143
Tytuł artykułu

Rate of convergence of Szász-beta operators based on q-integers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to establish the rate of convergence in terms of the weighted modulus of continuity and Lipschitz type maximal function for the q-Szász-beta operators. We also study the rate of A-statistical convergence. Lastly, we modify these operators using King type approach to obtain better approximation.
Wydawca

Rocznik
Strony
130--143
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
Bibliografia
  • [1] Lupas A., A q-analogue of the Bernstein operator, In: Seminar on Numerical and Statistical Calculus (Cluj-Napoca, 1987), Univ. ‘Babeş-Bolyai’, Cluj-Napoca, 1987, 9, 85-92
  • [2] Phillips G. M., Bernstein polynomials based on the q-integers, The heritage of P. L. Chebyshev: a Festschrift in honour of the 70th birthday of Prof. T. J. Rivlin. Ann. Numer. Math., 1997, 4(1-4), 511-518
  • [3] Aral A., A generalization of Szász-Mirakyan operators based on q-integers, Math. Comput. Model., 2008, 47(9), 1052-1062
  • [4] Aral A., Gupta V., The q-derivative and applications to q-Szász Mirakyan operators, Calcolo, 2006, 43(3), 151-170
  • [5] Gupta V., Mahmudov N. I., Approximation properties of the q-Szász-Mirakyan-beta Operators, Ind. J. Indus. Appl. Math., 2012, 3(2), 41-53
  • [6] Gupta V., Aral A., Convergence of the q analogue of Szász-Beta operators, Appl. Math. Comput., 2010, 216(2), 374-380
  • [7] Örkcü M., Doğru O., q-Szász-Mirakjan Kantorovich type operators preserving some test functions, Appl. Math. Lett., 2011, 24(9), 1588-1593
  • [8] Gupta V., Srivastava G. S., Sahai A., On simultaneous approximation by Szász-beta operators, Soochow J. Math., 1995, 21(1), 1-11
  • [9] Yüksel I., Dinlemez U., Voronovskaja type approximation theorem for q-Szász-beta operators, Appl. Math. Comp., 2014, 235, 555-559
  • [10] Aral A., Gupta V., Agarwal R. P., Applications of q-Calculus in Operator Theory, Berlin: Springer, 2013
  • [11] Gupta V., Agarwal R. P., Convergence estimates in approximation theory, Berlin: Springer, 2014
  • [12] Kac V., Cheung P., Quantum calculus, Springer, New York, 2002
  • [13] Özarslan M. A., Duman O., Local approximation behaviour of modied SMK operators, Miskolc Math. Notes, 2010, 11(1), 87-99
  • [14] Erençin A., Durrmeyer type modication of generalized Baskakov operators, Appl. Math. Comput., 2003, 218(8), 4384-4390
  • [15] Agratini O., Doğru O., Weighted approximation by q-Szász-King type operators, Taiwanese J. Math., 2010, 14(4), 1283
  • [16] Erençin A., Bascanbaz-Tunca G., Approximation properties of a class of linear positive operators in weighted spaces, Cr. Acad. Bulg. Sci., 2010, 63(10), 1397-1404
  • [17] Agrawal P. N., Karsli H., and Goyal M. , Szász-Baskakov type operators based on q-integers, J. Inequal Appl. 2014, 2014, 1-18.
  • [18] Lopez-Moreno A. J., Weighted simultaneous approximation with Baskakov type operators, Acta Math. Hung., 2004, 104(1-2), 143-151
  • [19] Lenze B., On Lipschitz type maximal functions and their smoothness spaces, Indag. Math., 1988, 50(1), 53-63
  • [20] Kolk E., Matrix summability of statistically convergent sequences, Analysis, 1993, 13(1-2), 77-83
  • [21] Ersan S., Doğru O., Statistical approximation properties of q-Bleimann, Butzer and Hahn operators, Math. Comput. Modelling, 2009, 49(7), 1595-1606
  • [22] Gadjiev A. D., Orhan C., Some approximation theorems via statistical convergence, J. Math., 2002, 32(1)
  • [23] Gupta V., Radu C., Statistical approximation properties of q-Baskakov-Kantorovich operators, Cent. Eur. J. Math., 2009, 7(4), 809-818
  • [24] Ispir N., Gupta V., A-Statistical approximation by the generalized Kantorovich-Bernstein type rational operators, Southeast Asian Bull. Math., 2008, 32, 87-97
  • [25] Örkcü M., Doğru O., Statistical approximation of a kind of Kantorovich type q-Szász-Mirakjan operators, Nonlinear Anal., 2012, 75(5), 2874-2882
  • [26] Örkcü M., Doğru O., Weighted statistical approximation by Kantorovich type q-Szász-Mirakjan operators, Appl. Math. Comput., 2011, 217(20), 7913-7919
  • [27] Ünal Z., Özarslan M. A., Duman O., Approximation properties of real and complex Post-Widder operators based on q-integers, Miskolc Math Notes, 2012, 13, 581-603
  • [28] Duman O., Orhan C., Statistical approximation by positive linear operators, Stud. Math., 2004, 161(2), 187-197
  • [29] Duman O., Khan M. K., Orhan C., A-statistical convergence of approximating operators, Math. Inequal. Appl., 2003, 6(4), 689-699
  • [30] King J. P., Positive linear operators which preserve x2, Acta Math. Hung., 2003, 99(3), 203-208
  • [31] DeVore R.A., Lorentz G.G., Constructive Approximation, Springer, Berlin 2013
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f1262e24-cf1b-48c7-8bac-c4487672cda4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.