Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 1 | 35--42
Tytuł artykułu

Study of the hydrodynamic characteristics of anti-heave devices of wind turbine platforms at different water depths

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the effect of water depth on the hydrodynamics of floating offshore wind turbines with open-hole anti-heave devices. The three-floating-body wind turbine platform is used as the primary research object in this paper. The effect of water depth on the reduction of the heave motion of a floating platform with anti-heave devices is systematically investigated through a series of experiments and numerical simulations. The results show high agreement between the test results and simulations, with larger values of heave motion in deep water. A wind turbine platform with anti-heave devices can effectively reduce the lifting and sinking motions when the wave period is arge.
Wydawca

Rocznik
Tom
Strony
35--42
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan , China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan , China, wangwei1981@zjou.edu.cn
  • School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai, China
  • Marine Design and Research Institute of China, Shanghai, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan , China, xieyh@zjou.edu.cn
Bibliografia
  • 1. Counci, ‘https://gwec.net/global-wind-report-2021’, GLOBAL WIND REPORT. 2021.
  • 2. G. Nagababu, S.S. Kachhwaha, and V. Savsani, ‘Estimation of technical and economic potential of offshore wind along the coast of India’, Energy. 2017, doi:10.1016/j.energy.2017.07.032.
  • 3. A. Goupee, B. Koo, R. Kimbal, K. Lambrakos, and H.J. Dagher, ‘Experimental Comparison of Three Floating Wind Turbine Concepts’, International Conference on Ocean, Offshore and Arctic Engineering. 2014.
  • 4. X. Wu, Y. Hu, Y. Li, J. Yang, L. Duan, T. Wang, and S. Liao, ‘Foundations of offshore wind turbines: a review’, Renew and Sustain. Energy Review. 2019, doi:10.1016/j.rser.2019.01.012.
  • 5. Q. Cao, L. Xiao, Z. Chen, and M. Liu, ‘An experimental study on dynamic behavior of a new concept of 10MW semisubmersible wind turbine’, ISOPE International Ocean and Polar Engineering Conference. ISOPE. 2020.
  • 6. A. Nematbakhsh, D.J. Olinge, and G. Tryggvason, ‘A Nonlinear computational model of floating wind turbines’, Journal of Fluids Engineering. 2013, doi:10.1115/1.4025074.
  • 7. A. Nematbakhsh, D.J. Olinge, and G. Tryggvason, ‘A Nonlinear simulation of a spar buoy floating wind turbine under extreme ocean conditions’, Journal of Renewable and Sustainable Energy. 2014, doi:10.1063/1.4880217.
  • 8. Z. Hu, L. Li, J. Wang, Q. Hu, and M.C. Shen, ‘Dynamic responses of a semi-type offshore floating wind turbine during normal state and emergency shutdown’, China Ocean Engineering. 2016, doi:10.1007/s13344-016-0005-y.
  • 9. A.M. Abou-Raya, N.N. Khali, and M.S. Afify, ‘Dynamic behavior of TLP’s supporting 5-MW wind turbines under multi-directional waves’, Ocean Systems Engineering. 2016, doi:10.12989/ose.2016.6.2.203.
  • 10. C. Barrera, I.J. Losad, R. Guanche, and L. Johanning, ‘The influence of wave parameter definition over floating wind platform mooring systems under severe sea states’, Ocean Engineering. 2019, doi:10.1016/j.oceaneng.2018.11.018.
  • 11. Z. Zhao, W. Wang, W. Shi, and X. Li, ‘Effects of secondorder hydrodynamics on an ultra-large semi-submersible floating offshore wind turbine’, Structures. 2020, doi:10.1016/j.istruc.2020.10.058.
  • 12. Y.R. Alkarem and B.O. Ozbahceci, ‘A complemental analysis of wave irregularity effect on the hydrodynamic responses of offshore wind turbines with the semi-submersible platform’, Applied Ocean Research. 2021, doi:10.1016/j.apor.2021.102757.
  • 13. Y.H. Bae, M.H. Kim, and Y.S. Shin, ‘Rotor-floater-mooring coupled dynamic analysis of mini TLP-type offshore floating wind turbines’, International Conference on Offshore Mechanics and Arctic Engineering, OMAE. 2010.
  • 14. I. Bayati, S. Gueydon, and M. Belloli, ‘Study of the effect of water depth on potential flow solution of the OC4 semisubmersible floating offshore wind turbine’, Energy Procedia. 2015, doi:10.1016/j. egypro.2015.11.419.
  • 15. X. Chen, H. Yu, W. Wang, and B. Wang, ‘Analysis of Motion Response of Wind Turbine Platform Considering Different Heading Angles and Water Depth’, 2nd International Conference on Sustainable Energy, Environment and Information Engineering (SEEIE). Atlantis Press. 2019.
  • 16. C. Le, Y. Li, and H. Ding, ‘Study on the coupled dynamic responses of a submerged floating wind turbine under different mooring conditions’, Energies. 2019, doi:10.3390/en12030418.
  • 17. L. Zhang, C. Michailides, Y. Wang, and W.Shi, ‘Moderate water depth effects on the response of a floating wind turbine’, Structures. 2020, doi:10.1016/j.istruc.2020.09.067.
  • 18. Z. Lin, X. Liu, and S. Lotfian, ‘Impacts of water depth increase on offshore floating wind turbine dynamics’, Ocean Engineering. 2021, doi:10.1016/j.oceaneng.2021.108697.
  • 19. W. Wei, Z. Chen, J. Panpan, L. Zhiqiang, and X. Yonghe, ‘Numerical simulation and experimental study on perforated heave plate of a DeepCwind floating wind turbine platform’, Ships and Offshore Structures. 2022, doi:10.1080/17445302.2022.2062157.
  • 20. W. Wei, F. Sheming, Y. Yunxiang, Z. Cheng, X. Liqun, W. Guibiao and L. Zhiqiang. ‘Study on the Influence of Chamfer Perforation on Heave and Pitch of a Single Floating Platform’ Polish Maritime Research. 2023. doi:/10.2478/pomr-2023-0005
  • 21. A. Robertson, J. Jonkman, M. Masciola, H. Song, A. Goupee, A. Coulling, and C. Luan, ‘Definition of the semi-submersible floating system for phase II of OC4’, National Renewable Energy Lab (NREL). Golden, CO (United States). 2014, doi:10.2172/1155123.
  • 22. J. Chen, Z. Liu, Y. Song, Y. Peng, and J. Li, ‘Experimental study on dynamic responses of a spar-type floating Offshore wind turbine’, Renewable Energy. 2022, doi:10.1016/j.renene.2022.06.149.
  • 23. L. Meng, Y. He, Y. Zhao, T. Peng, and J. Yang, ‘Experimental study on aerodynamic characteristics of the model wind rotor system and on characterization of a wind generation system’, China Ocean Engineering. 2019, doi:10.1007/s13344-019-0014-8.
  • 24. A. Kafeel, S. Aziz, M. Awais, M.A. Khan, K. Afaq, S.A. Idris, and S.M. Mostafa, ‘An expert system for rotating machine fault detection using vibration signal analysis’, Sensors. 2021, doi:10.3390/s21227587.
  • 25. C.W. Hirt and B.D. Nichols, ‘Volume of fluid (VOF) method for the dynamics of free boundaries’, Journal of Computational Physics. 1981, doi:10.1016/0021-9991(81)90145-5.
  • 26. T.T. Tran and D.H. Kim, ‘A CFD study of coupled aerodynamichydrodynamic loads on a semi-submersible floating Offshore wind turbine’, Wind Energy. 2017, doi:10.1002/we.2145.
  • 27. Y. Zhang and B. Kim, ‘A fully coupled computational fluid dynamics method for analysis of semi-submersible floating offshore wind turbines under wind-wave excitation conditions based on OC5 data’, Applied sciences. 2018, doi:10.3390/app8112314.
  • 28. T.T. Tran and D.H. Kim, ‘The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine’, Journal of wind engineering and industrial aerodynamics. 2015, doi:10.1016/j.jweia.2015.09.016.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f1236006-43bb-40a8-8bf0-9e8c832c81a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.