Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we answer the question: for any q > 0 with q ≠ 1, what are the greatest value p1= p1(q) and the least value p2= p2(q) such that the double inequality Lp1(a, b) < [L(aq, bq)]1/q < Lp2(a, b) holds for all a, b > 0 with a ≠ b? Here L(a, b) and Lp(a, b) are the logarithmic and pth generalized logarithmic means of a and b, respectively.
Czasopismo
Rocznik
Tom
Strony
271--182
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- School of Information & Engineering, Huzhou Teachers College, Huzhou 313000, P.R. China, jylsy@hutc.zj.cn
autor
- School of Mathematics Science, Anhui University, Hefei 230039, P.R. China, lbymxy@163.com
autor
- Department of Mathematics, Huzhou Teachers College, Huzhou 313000, P.R. China, chuyuming@hutc.zj.cn
Bibliografia
- [1] H. Alzer and S.-L. Qiu, Inequalities for means in two variables, Arch. Math. 80 (2003), 201-215.
- [2] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, Kluwer, Dordrecht, 2003.
- [3] B. C. Carlson, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly 78 (1971), 496-505.
- [4] B. C. Carlson, The logarithmic mean, Amer. Math. Monthly 79 (1972), 615-618.
- [5] B. C. Carlson and J. L. Gustafson, Total positive of mean values and hypergeometric functions, SIAM J. Math. Anal. 14 (1983), 389-395.
- [6] Y.-M. Chu and B.-Y. Long, Best possible inequalities between generalized logarithmic mean and classical means, Abstr. Appl. Anal. (2010), article ID 303286.
- [7] Y.-M. Chu and W. F. Xia, Inequalities for generalized logarithmic means, J. Inequal. Appl (2009), article ID 763252.
- [8] C. O. Imoru, The power mean and the logarithmic mean, Internat. J. Math. Math. Sci. 5 (1982), 337-343.
- [9] P. Kahlig and J. Matkowski, Functional equations involving the logarithmic mean, Z Angew. Math. Mech. 76 (1996), 385-390.
- [10] T. P. Lin, The power mean and the logarithmic mean, Amer. Math. Monthly 81 (1974), 879-883.
- [11] B.-Y. Long and Y.-M. Chu, Optimal inequalities for generalized logarithmic, arithmetic, and geometric means, J. Inequal. Appl. (2010), article ID 806825.
- [12] A. O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beograd Publ. Elektrotehn. Fok. Ser. Mat. Fiz. 678-715 (1980), 15-18.
- [13] A. O. Pittenger, The logarithmic mean in n variables, Amer. Math. Monthly 92 (1985), 99-104.
- [14] G. Pólya and G. Szegó, Isoperimetric Inequalities in Mathematical Physics, Prince-ton University Press, Princeton, 1951.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f0de2825-ff06-41b0-a92c-f3001a6fb131