ArticleOriginal scientific text
Title
Calcium alginate/activated carbon/humic acid tri-system porous fi bers for removing tetracycline from aqueous solution
Authors 1, 1, 1, 2, 1, 1,
Affiliations
- Qingdao University, State Key Laboratory of Biofibers and Ecotextiles, College of Mechanical and Electrical Engineering, China
- Qingdao University, College of Mechanical and Electrical Engineering, 308 Ningxia Road, China
Abstract
In this study, activated carbon and humic acid powder were fixed by the cross-linking reaction of sodium alginate.
Calcium alginate/activated carbon/humic acid (CAH) tri-system porous fibers were prepared by the wet spinning
method and freeze-dried for the removal of tetracycline in aqueous solution. Subsequently, the morphology and
structure of CAH fibers were measured by scanning electron microscopy (SEM) and the Brunauer-Emmett-Teller
(BET) method. The effect of pH, contact time, temperature and other factors on adsorption behavior were analyzed. The Langmuir and Freundlich isotherm models were used to fit tetracycline adsorption equilibrium data.
The dynamics data were evaluated by the pseudo-second-order model, the pseudo-second-order model and the
intraparticle diffusion model. Thermodynamic study confirmed that the adsorption of tetracycline on CAH fibers
was a spontaneous process.
Keywords
Sodium alginate, Humic acid, Activated carbon, Adsorption, Tetracycline
Bibliography
- Ahmed, M.B., Zhou, J.L., Ngo, H.H. & Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 532, 112–126. DOI: 10.1016/j.scitotenv.2015.05.130.
- Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M. &. Su X.(2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid & Interf. Sci. 368, 540–546. DOI: 10.1016/j.jcis.2011.11.015.
- Tayeri, V., Seidavi, A., Asadpour, L. & Phillips, C.J.C. (2018). A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Veter. Res. Commun. 42, 1–13.
- Wang, Q., Li, X., Yang, Q., Chen, Y. & Du, B. (2019). Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria. DOI: 10.1016/j.ecoenv.2019.01.047. DOI: 10.1016/j.ecoenv.2019.01.047.
- Homem, V. & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices – a review. J. Environ. Manag. 92, 2304–2347. DOI: 10.1016/j.jenvman.2011.05.023.
- Yang, Y., Liu, W., Xu, C., Wei, B. & Wang. J. (2017). Antibiotic resistance genes in lakes from middle and lower reaches of the Yangtze River, China: Effect of land use and sediment characteristics. Chemosphere 178, 19–25. DOI: 10.1016/j.chemosphere.2017.03.041.
- Le, X.T., Munekage, Y. & Kato, S. (2005). Antibiotic resistance in bacteria from shrimp farming in mangrove areas. Sci. The Total Environ. 349, 95–105. DOI: 10.1016/j.scitotenv.2005.01.006.
- Qiu, W., Sun, J., Fang, M., Luo, S., Tian, Y., Dong, P., Xu, B. & Zheng. C. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community. Sci. The Total Environ. DOI: 10.1016/j.scitotenv.2018.10.398.
- Jin, H., Kumar, A.P., Paik, D.-H., Ha, K.-Ch., Yoo, Y.-J. & Lee Y.-Ill. (2010). Trace analysis of tetracycline antibiotics in human urine using UPLC-QToF mass spectrometry. Microchem. J. 94, 139–147. DOI: 10.1016/j.microc.2009.10.010.
- Rong, H., Xin, X., Zuo, X., Nan, J. & Zhang, W. (2012). Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J. Hazard. Mater. 209–210, 137–145. DOI: 10.1016/j.jhazmat.2012.01.006.
- Wang, L., Ben, W., Li, Y., Liu, C. & Qiang, Z. (2018). Behavior of tetracycline and macrolide antibiotics in activated sludge process and their subsequent removal during sludge reduction by ozone. Chemosphere 206, 184–191. DOI: 10.1016/j.chemosphere.2018.04.180.
- Zhang, X., Lin, X., He, Y., Chen, Y., Luo, X. & Shang, R. (2019). Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. Int. J. Biol.Macromol. 124, 418–428. DOI: 10.1016/j.ijbiomac.2018.11.218.
- Zhang, D., Yin, J., Zhao, H., Zhu, J. & Wang. C. (2015). Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon. J. Environ. Chem. Engin. 3, 1504–1512. DOI: 10.1016/j.jece.2015.05.014.
- Liu, P., Liu, W.J., Jiang, H., Chen, J.J., Li, W.W &. Yu, H.Q (2012). Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Biores. Technol. 121, 235–240. DOI: 10.1016/j.biortech.2012.06.085.
- Farooq, M. Bell, A.H., Almustapha, M.N. & Andresen, J.M. (2017). Biomethane from an-aerobic digestion using activated carbon adsorption. Anaerobe 46, 33–40. DOI: 10.1016/j.anaerobe.2017.05.003.
- Yuan, G., Yue, Q., Gao, B., Sun, Y., Wang, W., Qian, L. & Yan, W. (2013). Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chem. Engin. J. 217, 345–353. DOI: 10.1016/j.cej.2012.09.038.
- Mahdavi, M., Ebrahimi, A., Mahvi, A.H., Fatehizadeh, A. & Azarpira, H. (2018). Experimental data for aluminum removal from aqueous solution by raw and iron-modified granular activated carbon. Data in Brief. 17, 731–738. DOI: 10.1016/j.dib.2018.01.063
- Hao, B.P. & Zheng, P.S. (2010). Suggestion on Utilization and Development of Humic Acid in Ecological Agriculture Construction. J. Shanxi Agric. Sci. DOI: 10.1080/00949651003724790. DOI: 10.1080/00949651003724790.
- Kloster, N. & Avena, M. (2015). Interaction of humic acids with soil minerals: adsorption and surface aggregation induced by Ca2+. Environ. Chem. 12, 37–39. DOI: 10.1071/EN14157.
- Pils, J.R. &. Laird, D.A. (2007). Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ. Sci. & Technol. 41, 1928.
- Tombácz, E., Dobos, Á., Szekeres, M., Narres, H.D., Klumpp, E. & Dékány, I. (2000). Effect of pH and ionic strength on the interaction of humic acid with aluminium oxide. Colloid & Polym. Sci. 278, 337–345. DOI: 10.1007/s003960050522.
- Zhang, H., Omer, A.M., Hu, Z., Ly, Y., Ji, C. & Ouyang, X.K. (2019). Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption. Internat. J. Biolog. Macromol. 135, 490.
- Dechojarassri, D., Omote, S., Nishida, K., Omura, T. & Tamura, H. (2018). Preparation of alginate fibers coagulated by calcium chloride or sulfuric acid: Application to the adsorption of Sr2. J. Hazard. Mater. 355, 154–161
- Sarmento, B., Martins, S., Ribeiro, A., Veiga, F., Neufeld, R. & Ferreira, D. (2006). Development and Comparison of Different Nanoparticulate Polyelectrolyte Complexes as Insulin Carriers. Internat. J. Peptide Res. & Therap. 12, 131–138. DOI: 10.1007/s10989-005-9010-3.
- Jing, Y., Wang, J. & Jiang, Y. (2016). Removal of Uranium from Aqueous Solution by Alginate Beads. Nuclear Engin. & Technol. 49, S1738573316301826. DOI: 10.1016/j.net.2016.09.004.
- Olad, A. & Azhar, F.F. (2014). A study on the adsorption of chromium (VI) from aqueous solutions on the alginate-montmorillonite/polyaniline nanocomposite. Desal. & Water Treatm. 52, 2548–2559. DOI: 10.1080/19443994.2013.794711.
- Pawar, R.R., Lalhmunsiama, Gupta, P., Sawant, S.Y., Shahmoradi, B. & Lee, S.M. (2018). Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. Internat. J. Biol. Macromol. 114, 1315–1324. DOI: 10.1016/j.ijbiomac.2018.04.008.
- Foroughi, J., Spinks, G.M., Wallace, G.G & Whitten, P.G. (2008). Production of polypyrrole fibres by wet spinning. Synt. Metals. 158, 104–107. DOI: 10.1016/j.synthmet.2007.12.008.
- Jiaguo, Y.U., Wang, S., Low, J. & Xiao, W. (2013). Enhanced photocatalytic performance of direct Z-scheme g-C3N4--TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890.
- Gu, C., Karthikeyan, K.G., Sibley, S.D. & Pedersen, J.A. (2007). Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66, 1494–1501.
- Chen, L.C., Lei, S., Wang, M.Z., Yang, J. & Ge, X.W. (2016). Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. Chin. Chem. Letters. 27, 511–517. DOI: 10.1016/j.cclet.2016.01.057.
- Choi, K.J., Kim, S.G. & Kim, S.H. (2008). Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 151, 38–43. DOI: 10.1016/j.jhazmat.2007.05.059.
- Zhao, Y., Xueyuan, G.U., Gao, S., Geng, J. & Wang, X. (2012). Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects. Geoderma 183–184, 12–18. DOI: 10.1016/j.geoderma.2012.03.004.
- Dong, C., Zeng, Z., Zeng, Y., Fan, Z. & Wang, M. (2016). Removal of methylene blue and mechanism on magnetic γ-Fe 2 O 3 /SiO 2 nanocomposite from aqueous solution. Water Res. & Ind. 15, 1–13. DOI: 10.1016/j.wri.2016.05.003.
- Langmuir, I. The constitution and fundamental properties of solids and liquids, DOI: 10.1016/s0016-0032(17)90938-x. DOI: 10.1016/s0016-0032(17)90938-x.
- Kooh, M.R.R., Dahri, M.K., Lim, L.B. L., Lim, L.H. & Malik, O.A. (2016). Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling. Environ. Earth Sci. 75, 783. DOI: 10.1007/s12665-016-5582-9.
- Gupta, V.K., Pathania, D., Sharma, S., Agarwal, S. & Singh, P. (2013). Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. J. Molec. Liquids 177, 343–352. DOI: 10.1016/j.molliq.2012.10.017.
- Dğan, M., Alkan, M., Demirbaş, Ö., Özdemir, Y. & Özmetin, C. (2006). Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Engin. J. 124, 89–101. DOI: 10.1016/j.cej.2006.08.016.
- Ho, Y.S. & Chiang, C.C. (2001). Sorption Studies of Acid Dye by Mixed Sorbents. Adsorp. J. The Internat. Ads. Soc. 7, 139–147. DOI: 10.1023/A:1011652224816.
- Jiang, L .H., Liu, Y.G., Zeng, G.M., Xiao, F.Y., Hu, X.J., Hu, X., Wang, H., Li, T.T., Zhou, L. & Tan, X.F. (2016). Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Engin. J. 284, 93–102. DOI: 10.1016/j.cej.2015.08.139.
- Elmoubarki , R., Mahjoubi, F.Z., Tounsadi, H., Moustadraf, J., Abdennouri, M., Zouhri, A., Albani, A.E. & Barka, N. (2015). Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Res. & Ind. 9, 16–29. DOI: 10.1016/j.wri.2014.11.001.
- Wu, F.C., Tseng, R.L. &. Juang, R.S. (2005). Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid Interf. Sci. 283, 49–56. DOI: 10.1016/j.jcis.2004.08.037.
- Martins, A .C., Pezoti, O., Cazetta, A.L., Bedin, K.C., Yamazaki, D.A.S., Bandoch, G.F.G., Asefa, T., Visentainer, J.V. & Almeida, V.C. (2015). Removal of tetracycline by NaOH--activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Engin. J. 260, 291–299. DOI: 10.1016/j.cej.2014.09.017.
- Neghlani, P.K., Rafizadeh, M. &. Taromi, F.A. (2011). Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers. J. Hazard. Mater. 186, 182–189.