Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | nr 9-10 | 58--66
Tytuł artykułu

Nowoczesne atmosferyczne zbiorniki produktów naftowych ze stali HSS – technologie spawania i monitorowanie jakości

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Modern atmospheric storage tanks for petroleum products made of HSS steels – welding technologies and quality monitoring
Języki publikacji
PL
Abstrakty
PL
Opisano konstrukcję atmosferycznych zbiorników produktów naftowych oraz warunki ich eksploatacji w warunkach obciążeń katastroficznych, stale stosowane na te zbiorniki, łącznie ze stalami o wysokiej granicy plastyczności – HSS, spawalność stali HSS oraz systemy monitorowania w czasie rzeczywistym jakości złączy konstrukcji zbiorników.
EN
The paper presents the design of atmospheric storage tanks for petroleum products and their operating conditions in catastrophic conditions, the steels used for the storage tanks, including high-yield-strength steels – HSS, the weldability of HSS steels, and systems for the real-time monitoring of the quality of tanks welded joints.
Wydawca

Rocznik
Tom
Strony
58--66
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Wydział Mechaniczny Technologiczny, Politechnika Śląska
Bibliografia
  • 1. American Petroleum Institute, Seismic Design of Storage Tanks - Appendix E, Welded Steel Tanks for Oil Storage, API 650, 12th Ed., Washington, D.C. (2013)
  • 2. EN 14015:2010. Specification for the design and manufacture of site built, vertical, cylindrical, flat-bottomed, above ground, welded, steel tanks for the storage of liquids at ambient temperature and above.
  • 3. European Committee for Standardization, Silos, tanks and pipelines, Eurocode 8, part 4, CEN/TC 250, EN 1998-4, Brussels (2006).
  • 4. Altemühl B.:LNG tank erection using the spiral method. Svetsaren 65/1 (2010) 29-33.
  • 5. http://www.china.org.cn/china/photos/2009-07/15/content_18141428.htm
  • 6. https://inrotech.com/new-robot-welding-solution-for-storage-tanks/ https://inrotech.com/inrotech-crawler/
  • 7. Welding Oil Storage Tanks: Techniques and Considerations. By Engineering Department Arc Machines, Inc. July 9, 2020. https://resources.arcmachines.com/welding-oil-storage-tanks-techniques-and-considerations-ami/
  • 8. Klimpel: Spawanie, Zgrzewanie i Cięcie Metali. Technologie. W-wa, WNT, 2000.
  • 9. New robot welding solution for storage tanks: https://inrotech.com/new-robot-welding-solution-for-storage-tanks/ INROTECH May 7, 2021.
  • 10. H. Zhao et al: Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company. Energy Materials 2014 pp 863-869.
  • 11. T. Chandra et al.: Research on High Heat Input Welding of the High Strength Electro-Gas Flux-Cored Wire Used for Large Storage Tank. Materials Science Forum (Volumes 638-642) January 2010.
  • 12. Kupriyanov D.V., Reshanov V.B.: Gas-shielded welding of containers with a volume of 20. 000 m3, assembled by the sheet method. Welding International 16/2 (2002) 151-154.
  • 13. Anastasopoulos A.A.et al.: In-Service Inspection and Structural Integrity Assessment of Atmospheric Storage Tanks, Non-destructive Testing of Materials and Structures (2013) 891-896.
  • 14. Fidali M., Jamrozik W.: Diagnostic method of welding process based on fused infrared and vision images, Infrared Physics and Technology 61 (2013) 241–253, 2013.
  • 15. Park S., et al.: Development of AE Monitoring Method for Corrosion Damage of the Bottom Plate in Oil Storage Tank on the Neutral Sand under Loading, Materials Transactions 47/4 (2006) 1240- 1246.
  • 16. Kazys R., Sanderson R.: Condition monitoring of large oil and chemical storage tanks using guided waves, NDT 2004 Conference, Torquay, UK, 123-128.
  • 17. Barvinko A.Y.: Evaluation of residual life of welded joints on tank vertical wall after 20-25 years of service. Paton Welding Journal. no 5 (2009) 34-37.
  • 18. Guan W.H., et al.: Present status of inspection technology and standards for large-sized in-service vertical storage tanks, ASME Pressure Vessels and Piping Division Conference, Baltimore, 2011, PVP2011-57711.
  • 19. Xu Y., et al.: Effectiveness of AE On-Line Testing Results of Atmospheric Vertical Storage Tank Floors, ASME Pressure
  • 20. Cholewa W.: Expert systems in technical diagnostic. In: Fault Diagnosis. Models. Artificial Intelligence. Applications. Springer, Berlin 2004, pp. 591-631.
  • 21. Shieh-Shing Lin, et al.: A heuristic feedback control theory based interactive expert system – RSCD, Expert Systems with Applications, vol. 36,pp. 11907-11917, 2009.
  • 22. API – RP 651:Cathodic Protection of Aboveground Petroleum Storage Tanks.
  • 23. You Feng et al.: Corrosion analysis and remaining useful life prediction for storage tank bottom. International Journal of Advanced Robotic Systems September-October 2019: pp.1–9, DOI: 10.1177/1729881419877051 journals.sagepub.com/home/arx.
  • 24. Funahashi M.: Corrosion control of above ground storage tank bottom steel plates using aluminium mesh anode with newly developed backfill, NACE Corrosion Conference & Expo 2009, paper 09074.
  • 25. Dehghan Manshadi S.H., et al.: The effects of long-term corrosion on the dynamic characteristics of ground based cylindrical liquid storage tanks, Thin-Walled Structures 48 (2010) 888–896.
  • 26. Maheri M.R., Abdollahi A.: The effects of long term uniform corrosion on the buckling of ground based steel tanks under seismic loading, Thin-Walled Structures 62 (2013) 1–9.
  • 27. Martinez S.: Estimating internal corrosion rate and internal inspection interval of aboveground hydrocarbon storage tanks. Gorivaimaziva 52/2 (2013) pp. 134-143.
  • 28. Diagnosis of corrosion at the bottom of oil tanks. http://nrifd.fdma.go.jp/english/research/protect_oiltanks/01/index.html
  • 29. Miaoke Feng, Kaining He and Yanhong Zhao: Corrosion and protection of island and offshore oil storage tank. E3S Web of Conferences 252, 03035 (2021) https://doi.org/10.1051/e3sconf/202125203035.
  • 30. Qi Ge et al.: Method Study for Finite Element Modelling of Large Oil Storage Tanks. May 2012. Applied Mechanics and Materials 166-169: pp.471-476. DOI:10.4028/www.scientific.net/AMM.166-169.471.
  • 31. Carlos A. Burgos et al. : Buckling estimates for oil storage tanks: Effect of simplified modelling of the roof and wind girder. Thin-Walled Structures. V 91, 2015, pp. 29-37.
  • 32. Ali SARI: Risk Assessment of Industrial Facilities in Seismic Regions Considering Domino Effects – Step by Step Analysis Methods. https://prosesemniyeti.kosano.org.tr/uploads/pdf/sunum2019/22.
  • 33. Karim Dhanji: Using Finite Element Analysis to Evaluate High Wind Speed Buckling of Storage Tanks. https://www.fauske.com/blog/using-finite-element-analysis-evaluate-high-wind-speed-buckling-storage-tanks.
  • 34. Lei Shi et al.: Experimental and numerical investigation of stress in a large-scale steel tank with a floating roof. Thin-Walled Structures. V 117, 2017, pp. 25-34.
  • 35. Bojana Aleksić et al.: Analysis of the effects of butt welded joints on a carrying capacity of a structure tank. ZASTITA MATERIJALA 58 (4) pp. 462 - 468 (2017).
  • 36. Beidokhti B., et al.: A comprehensive study on the microstructure of high strength low alloy pipeline welds, Journal of Alloys and Compounds 597 (2014) 142–147.
  • 37. S. K. Sharma, S. Mahewshwari: A review on welding of high strength oil and gas pipeline steels. Journal of Natural Gas Science and Engineering, Volume 38, February 2017, Pages 203-21.
  • 38. Willms R.: High strength steel for steel constructions, Proceedings of the Nordic Steel Construction Conference, 2009.
  • 39. Qiang X., Bijlaard F., Kolstein H.: Dependence of mechanical properties of high strength steel S690 on elevated temperatures, Construction and Building Materials 30 (2012) 73-79.
  • 40. Abílio M.P. de Jesus, et al: A comparison of the fatigue behaviour between S355 and S690 steel grades, Journal of Constructional Steel Research 79 (2012) 140-150.
  • 41. Prinz G.S., et al.: Fatigue Analysis of Unanchored Steel Liquid Storage Tank Shell-to-Base Connections during Earthquake Induced uplift, 15the World Conference on Earthquake Engineering, Lisbon 2012.
  • 42. Ch. Mjonga: The failure investigation of fuel storage tanks weld joints in Tanzania. International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 4, April 2017, pp. 128–137, Article ID: IJMET_08_04_015 Available online at http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=8&IType=4, ISSN Print: 0976-6340 and ISSN Online: 0976-6359
  • 43. Hamdan F.H.: Seismic behaviour of cylindrical steel liquid storage tanks, Journal of Constructional Steel Research 53 (2000) 307–333.
  • 44. Trebuna F., et al.: Failure analysis of storage tank. Engineering Failure Analysis 1 (2009) 26–38.
  • 45. https://www.nbcnews.com/news/us-news/houston-area-chemical-fire-expected-burn-days-n984686,
  • 46. https://www.eng-tips.com/viewthread.cfm?qid=449655
  • 47. Kuebler R., et al.: The effect of welding parameters and hydrogen levels on the weldability of high strength Q&T steel welded with FCAW consumables, Welding Journal, 45/1 (2000) 38-47.
  • 48. Enzinger N., Cerjak H.: Characterisation of cracks in high strength steel weldments. Welding in the World 51/11-12 (2007) 29-33.
  • 49. Lazić V., et al: Estimates of weldability and selection of the optimal procedure and technology for welding of high strength steels. Procedia Engineering 40 (2012) 310-315.
  • 50. Gorka J.: Analysis of simulated welding thermal cycles S700MC using thermal imaging camerB. Advanced Materials Research 837(2014) 375-380.
  • 51. Zhang L., et al.: Effect of cooling rate on microstructure and properties of microalloyed HSLA steel weld metals. Science and Technology of Welding and Joining 20(2015) 371-377.
  • 52. Arsić D., et al.: Optimal Welding Technology Of High Strength Steel S690QL. Materials Engineering - Materiálové inžinierstvo 22(2015) 33-47.
  • 53. R.S. Barot, V.J. Patel. Process monitoring and internet of things feasibility for submerged arc welding: State of art. Materials Today: Proceedings 45 (2021) pp. 4441–4446.
  • 54. Jamrozik W., et al.: Application of fused visual and thermal images in monitoring and evaluation of welding processes Welding International 29/6 (2015).
  • 55. A. Klimpel: Analiza systemów monitorowania w czasie rzeczywistym jakości procesów spawania laserowego. Stal Metale & Nowe Technologie. Cz. I – WRZESIEŃ-PAŹDZIERNIK 2019, s. 96-101, Cz. II – LISTOPAD GRUDZIEŃ 2019, s. 76-79, Cz. III – WRZESIEŃ-PAŹDZIERNIK 2020, s. 70-75.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f0ab29e3-61fa-4cbc-b20b-f1ffc98ae6f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.