Czasopismo
2021
|
Vol. 69, no. 1
|
37--60
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We are interested in the nonlinear, time-harmonic Maxwell equation ∇(∇E)+V(x)E=h(x,E) in R3 with sign-changing nonlinear term h, i.e. we assume that h is of the form h(x,αw)=f(x,α)w−g(x,α)w for w∈R3, |w|=1 and α∈R. In particular, we can consider the nonlinearity consisting of two competing powers, h(x,E)=|E|p−2E−|E|q−2E with 2
Rocznik
Tom
Strony
37--60
Opis fizyczny
Bibliogr. 19 poz
Twórcy
autor
- Institute of Mathematics Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland, bbieganowski@impan.pl; bartoszb@mat.umk.pl
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
- [1] A. Azzollini, V. Benci, T. D’Aprile and D. Fortunato, Existence of static solutions of the semilinear Maxwell equations, Ricerche Mat. 55 (2006), 283-297.
- [2] T. Bartsch, T. Dohnal, M. Plum and W. Reichel, Ground states of a nonlinear curl curl problem in cylindrically symmetric media, Nonlinear Differential Equations Appl. 23 (2016), art 52, 34 pp.
- [3] T. Bartsch and J. Mederski, Ground and bound state solutions of semilinear time-harmonic Maxwell equations in a bounded domain, Arch. Ration. Mech. Anal. 215 (2015), 283-306.
- [4] T. Bartsch and J. Mederski, Nonlinear time-harmonic Maxwell equations in an aniso tropic bounded medium, J. Funct. Anal. 272 (2017), 4304-4333.
- [5] T. Bartsch and J. Mederski, Nonlinear time-harmonic Maxwell equations in domains, J. Fixed Point Theory Appl. 19 (2017), 959-986.
- [6] B. Bieganowski and J. Mederski, Nonlinear Schrödinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities, Comm. Pure Appl. Anal. 17 (2018), 143-161.
- [7] B. Bieganowski and J. Mederski, Bound states for the Schrödinger equation with mixed-type nonlinearites, arXiv:1905.04542 (2019).
- [8] F. O. de Paiva, W. Kryszewski and A. Szulkin, Generalized Nehari manifold and semilinear Schrödinger equation with weak monotonicity condition on the nonlinear term, Proc. Amer. Math. Soc. 145 (2017), 4783-4794.
- [9] W. Dörfler, A. Lechleiter, M. Plum, G. Schneider and C. Wieners, Photonic Crystals: Mathematical Analysis and Numerical Approximation, Springer, Basel, 2012.
- [10] M. Gaczkowski, J. Mederski and J. Schino, Multiple solutions to cylindrically symmetric curl-curl problems and related Schrödinger equations with singular potentials, arXiv:2006.03565 (2020).
- [11] L.-J. Gu and H-S. Zhou, An improved fountain theorem and its application, Adv. Nonlinear Stud. 17 (2017), 727-738.
- [12] A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell’s Equations: Expansion-, Integral-, and Variational Methods, Springer, 2015.
- [13] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations 3 (1998), 441-472.
- [14] J. Mederski, Ground states of time-harmonic semilinear Maxwell equations in R3 with vanishing permittivity, Arch. Ration. Mech. Anal. 218 (2015), 825-861.
- [15] J. Mederski, Nonradial solutions of nonlinear scalar field equations, Nonlinearity 33 (2020), 6349-6380.
- [16] J. Mederski, J. Schino and A. Szulkin, Multiple solutions to a nonlinear curl-curl problem in R3, Arch. Ration. Mech. Anal. 236 (2020), 253-288.
- [17] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford Univ. Press, 2003.
- [18] W. Nie, Optical nonlinearity: phenomena, applications, and materials, Adv. Mater. 5 (1993), 520-545.
- [19] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal. 257 (2009), 3802-3822.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f0a7cdca-900f-4dc8-bc01-47d52bfad532