Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 30, nr 4 | 675--687
Tytuł artykułu

A new approach to water cooling of photovoltaic panels with a tracking system

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a water-cooling system for photovoltaic (PV) modules using a two-axis tracking system that tracks the apparent position of the Sun on the celestial sphere. The cooling system consists of 150 adjustable spray nozzles that cool the bottom layer of PV modules. The refrigerant is water taken from a tank with a capacity of 7 m3. A water recovery system reduces its consumption with efficiency of approximately 90%. The experimental setup consists of a full-size photovoltaic installation made of 10 modules with an output power of 3.5 kWp combined with a tracking system. The article presents an analysis of the cooling system efficiency in various meteorological conditions. Measurements of energy production were performed in the annual cycle using three different types of photovoltaic installations: stationary, two-axis tracking system and two-axis tracking system combined with the cooling system.
Wydawca

Rocznik
Strony
675--687
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Chair of Electronic and Photonic Metrology, Bolesława Prusa 53/55, 50-317 Wrocław, Poland , kamil.plachta@pwr.edu.pl
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Chair of Electronic and Photonic Metrology, Bolesława Prusa 53/55, 50-317 Wrocław, Poland , janusz.mroczka@pwr.wroc.pl
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Chair of Electronic and Photonic Metrology, Bolesława Prusa 53/55, 50-317 Wrocław, Poland , mariusz.ostrowski@pwr.edu.pl
Bibliografia
  • [1] Dupeyrat, P., Ménézo, C., & Fortuin, S. (2014). Study of the thermal and electrical performances of PVT solar hot water system. Energy and Buildings, 68, 751-755. https://doi.org/10.1016/j.enbuild.2012.09.032
  • [2] Bayrak, F., Öztop, H. F., & Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212, 112789. https://doi.org/10.1016/j.enconman.2020.112789
  • [3] Grubišić-Čabo, F., Nižetić, S., & Marco, T. G. (2016). Photovoltaic Panels: A review of the cooling techniques. Transactions of Famena, 40(SI-1), 63-74. https://hrcak.srce.hr/file/234790
  • [4] Guarracino, I., Freeman, J., Ramos, A. C., Kalogirou, S. A., Ekins-Daukes, N. J., & Markides, C. N. (2019). Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions. Applied Energy, 240, 1014-1030. https://doi.org/10.1016/j.apenergy.2018.12.049
  • [5] Zondag, H. H. (2008). Flat-plate PV-Thermal collectors and systems: A review. Renewable & Sustainable Energy Reviews, 12(4), 891-959. https://doi.org/10.1016/j.rser.2005.12.012
  • [6] Tiwari, G., Mishra, R. K., & Solanki, S. (2011). Photovoltaic modules and their applications: A review on thermal modelling. Applied Energy, 88(7), 2287-2304. https://doi.org/10.1016/j.apenergy.2011.01.005
  • [7] Herrando, M., Pantaleo, A., & Markides, C. N. (2019). Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications. Renewable Energy, 143, 637-647. https://doi.org/10.1016/j.renene.2019.05.004
  • [8] Vallati, A., Ocłoń, P., Colucci, C., Mauri, L., De Lieto Vollaro, R., & Taler, J. (2019). Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector. Energy, 174, 91-96. https://doi.org/10.1016/j.energy.2019.02.152
  • [9] Zaharil, H. A., & Hasanuzzaman, M. (2020). Modelling and performance analysis of parabolic trough solar concentrator for different heat transfer fluids under Malaysian condition. Renewable Energy, 149, 22-41. https://doi.org/10.1016/j.renene.2019.12.032
  • [10] Tao, T., Zheng, H., He, K., & Mayere, A. (2011). A new trough solar concentrator and its performance analysis. Solar Energy, 85(1), 198-207. https://doi.org/10.1016/j.solener.2010.08.017
  • [11] Aste, N., Tagliabue, L. C., Del Pero, C., Testa, D., & Fusco, R. (2015). Performance analysis of a large-area luminescent solar concentrator module. Renewable Energy, 76, 330-337. https://doi.org/10.1016/j.renene.2014.11.026
  • [12] Mroczka, J., & Plachta, K. (2015, June). Modeling and analysis of the solar concentrator in photovoltaic systems. In Modeling Aspects in Optical Metrology V (Vol. 9526, pp. 340-347). SPIE. https://doi.org/10.1117/12.2184632
  • [13] Lan, J. (2023). Development and performance test of a novel solar tracking sensor. Metrology and Measurement Systems, 30(2), 289-303. https://doi.org/10.24425/mms.2023.144870
  • [14] Arora, S., Singh, H., Sahota, L., Arora, M. K., Arya, R., Singh, S., Jain, A., & Singh, A. (2020). Performance and cost analysis of photovoltaic thermal (PVT)-compound parabolic concentrator (CPC) collector integrated solar still using CNT-water based nanofluids. Desalination, 495, 114595. https://doi.org/10.1016/j.desal.2020.114595
  • [15] Imam, M. F. I. A., Beg, R. A., Rahman, M. L., & Khan, M. Z. H. (2016). Performance of PVT solar collector with compound parabolic concentrator and phase change materials. Energy and Buildings, 113, 139-144. https://doi.org/10.1016/j.enbuild.2015.12.038
  • [16] Hanwha Q CELLS GmbH (2017). Q.PEAK DUO-G8 345-360.
  • [17] Walczak, M., Bychto, L., Kraśniewski, J., & Duer, S. (2022). Design and evaluation of a low-cost solar simulator and measurement system for low-power photovoltaic panels. Metrology and Measurement Systems, 29(4), 685-700. https://doi.org/10.24425/mms.2022.143067
  • [18] Poulek, V., Matuška, T., Libra, M., Kachalouski, E., & Sedláček, J. (2018). Influence of increased temperature on energy production of roof integrated PV panels. Energy and Buildings, 166, 418-425. https://doi.org/10.1016/j.enbuild.2018.01.063
  • [19] D’Orazio, M., Di Perna, C., & Di Giuseppe, E. (2014). Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate. Renewable Energy, 68, 378-396. https://doi.org/10.1016/j.renene.2014.02.009
  • [20] Duffie, J. A., & Beckman, W. A. (1980). Solutions Manual for Solar Engineering of Thermal Processes. University of Wisconsin-Madison.
  • [21] Mesbahi, O., Tlemçani, M., Janeiro, F. M., Hajjaji, A., & Kandoussi, K. (2021). Sensitivity analysis of a new approach to photovoltaic parameters extraction based on the total least squares method. Metrology and Measurement Systems, 28(4), 751-765. https://doi.org/10.24425/mms.2021.137707
  • [22] García, M. A., & Balenzategui, J. L. (2004). Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations. Renewable Energy, 29(12), 1997-2010. https://doi.org/10.1016/j.renene.2004.03.010
  • [23] Brihmat, F., & Mekhtoub, S. (2014, December). PV cell temperature/PV power output relationships homer methodology calculation. In Conférence Internationale des Energies Renouvelables - CIER’13. International Journal of Scientific Research & Engineering Technology, 1(02).
  • [24] Plachta, K. (2020, April). Algorithm for precise positioning of photovoltaic panels. In Photonics for Solar Energy Systems VIII (Vol. 11366, pp. 65-70). SPIE. https://doi.org/10.1117/12.2557675
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f07a858d-d43b-4c98-90bb-62e34c4ea587
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.