Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Nr 47 | 95--115
Tytuł artykułu

Common fixed point theorems in intuitionistic fuzzy metric space using general contractive condition of integral type

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to prove some common fixed point theorems for six discontinuous mappings in non complete intuitionistic fuzzy metric spaces using contractive condition of integral type.
Wydawca

Rocznik
Tom
Strony
95--115
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
Bibliografia
  • [1] Alaca C., Turkoglu D., Yildiz C., Fixed points in intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 29(2006), 1073-1078.
  • [2] Atanassov K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
  • [3] Banach S., Theoriles Operations Linearies Manograie Mathematyezne, Warsaw, Poland, 1932.
  • [4] Branciari A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, International J. of Mathematics and Mathematical Sciences, 29(2002), 531-536.
  • [5] Edelstein M., On fixed and periodic points under contractive mappings, J. London Math. Soc., 37(1962), 74-79.
  • [6] El Naschie M.S., On the uncertainty of Cantorian geometry and two-slit experiment, Choas, Solitons & Fractals, 9(1998), 517-529.
  • [7] El Naschie M.S., On the verifications of heterotic string theory and e(TO) theory, Chaos, Solitons & Fractals, 11(2000), 397-407.
  • [8] El Naschie M.S., A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons & Fractals, 19(2004), 209-236.
  • [9] El Naschie M.S., Fuzzy dodecahedron topology and E-infinity spacetime as a model for quantum physics, Chaos, Solitons & Fractals, 30(2006), 1025-1033.
  • [10] Grabiec M., Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988), 385-389.
  • [11] George A., Veeramani P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399.
  • [12] Gregori V., Sapena A., On fixed point theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 125(2002), 245-252.
  • [13] Hadzic O., Fixed point theory in probabilistic metric spaces, Navi Sad: Ser¬bian Academy of Science and Arts, 1995.
  • [14] Jungck G., Rhoades B.E., Fixed point for set valued functions without continuity, Ind. J. Pure and Appl. Math., 29(3)(1998), 227-238.
  • [15] Karmosil O., Michalek J., Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.
  • [16] Klement E.P., Mesiar R., Pap E., Triangular Norms, Kluwer Academic Pub. Trends in Logic 8, Dordrecht 2000.
  • [17] Kubiaczyk I., Sharma S., Common coincidence point in fuzzy metric space, J. Fuzzy Math., 11(2003), 1-5.
  • [18] Kutukcu S., Weak Compatibility and common coincidence points in in- tuitionistic fuzzy metric spaces, Southeast Asian Bulletin of Mathematics, 32(2008), 1081-1089.
  • [19] Menger K., Statistical metrices, Proc. Nat. Acad. Sci., 28(1942), 535-537.
  • [20] Muralisankar S., Kalpana G., Common fixed point theorem in intuition- istic fuzzy metric spaces using general contractive condition of integral type, Int. J. Contemp. Math. Sciences, 4(11)(2009), 505-518.
  • [21] Park J.H., Intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 22(2004), 1039-1046.
  • [22] Sedghi S., Shobe N., Aliouche A., Common fixed point theorems in in- tuitionistic fuzzy metric spaces through condition of integral type, Applied Mathematics and Information Sciences, 2(1)(2008), 61-82.
  • [23] Schweizer B., Sklar A., Statistical metric spaces, Pacific Journal Math., 10(1960), 314-334.
  • [24] Sharma S., Tilwankar P., Common fixed point theorem for multivalued mappings in intuitionistic fuzzy metric space, East Asian Mathematical Journal., Korea, 24(2008), 223-232.
  • [25] Turkoglu D., Alaca C., Yildiz C., Compatible maps and compatible maps of types (U3b1) and (U3b2) in intuitionistic fuzzy metric spaces, Demonstratio Math., 39(2006), 671-684.
  • [26] Yager R.R., On a class of weak triangular norm operators, Information Sciences, 96(1-2)(1997), 47-78
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-f01cae65-5f50-4bec-a0ca-9b6c644bc2de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.