Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 55, nr 2 | 349--354
Tytuł artykułu

Thermal properties of Fe-based bulk metallic glasses

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of paper is presentation of results bulk metallic glasses thermal properties such as temperatures typical for glassy transition and thermal conductivity. Design/methodology/approach: Investigations were realized for Fe<sub>36</sub>Co<sub>36</sub>B<sub>19.2>/sub>Si<sub>4.8</sub>Nb<sub4</sub> samples with dimension 3 mm in diameter. Bulk test pieces were fabricated by copper mold casting method. Thermal analysis of master alloy (DTA) and samples in as-cast state (DSC) was realized. For amorphous structure confirmation the X-ray diffraction phase analysis (XRD) was realized. Additionally scanning electron microscopy (SEM) micrographs were performed in order to structure analysis. Thermal conductivity was determined by prototype measuring station. Findings: The XRD and SEM analysis confirmed amorphous structure of samples. Broad diffraction “halo” was observed for every testing piece. Fracture morphology is smooth with many “veins” on the surface, which are characteristic for glassy state. DTA analysis confirmed eutectic chemical composition of master alloy. Thermal conductivity measurements proved that both samples have comparable thermal conductivity. Practical implications: The FeCo-based bulk metallic glasses have attracted great interest for a variety application fields for example precision machinery materials, electric applications, structural materials, sporting goods, medical devices. Thermal conductivity is useful and important property for example computer simulation of temperature distribution and glass forming ability calculation. Originality/value: The obtained results confirm the utility of applied investigation methods in the thermal and structure analysis of examined amorphous alloys. Thermal conductivity was determined using the prototype measuring station, which is original issue of the paper. In future, the measuring station will be expanded for samples with different dimensions.
Wydawca

Rocznik
Strony
349--354
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Division of Nanocrystalline and Functional Materials and Sustainable Pro-ecological Technologies, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Nanocrystalline and Functional Materials and Sustainable Pro-ecological Technologies, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, anna.januszka@polsl.pl
autor
  • Division of Nanocrystalline and Functional Materials and Sustainable Pro-ecological Technologies, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] A. Pusz, A. Januszka, S. Lesz, R. Nowosielski, Thermal conductivity measuring station for metallic glasses, Archives of Materials Science and Engineering 47/2 (2011) 95-102.
  • [2] M. Stencel, D. Osiński, Thermal conductivity measurement system, Measurements, Automatics, Control/Association of Polish Eengineers and Mechanics, Metrology section, Polish Association of Automatics and Robotics Measurements POLSPAR 53 (2007) 601-604 (in Polish).
  • [3] G. Paul, M. Chopkar, I. Manna, P.K. Das, Techniques for measuring the thermal conductivity of nanofluids, A review, Renewable and Sustainable Energy Reviews 14 (2010) 1913-1924.
  • [4] A. Pusz, Z. Chrobok, Project of thermal conductivity measuring station for plastic composites, Proceedings of the 11th International Scientific and Technical Conference Engineering Polymers and Composites, Olsztyn, 2010, 285-291 (in Polish).
  • [5] A. Inoue, Bulk amorphous and nanocrystalline alloys with high functional properties, Materials Science and Engineering A 304-306 (2001) 1-10.
  • [6] A. Januszka, R. Nowosielski, Structure and density of Fe36Co36B19.2Si48Nb4 bulk glassy alloy, Journal of Achievements in Materials and Manufacturing Engineering 52/2 (2012) 67-74.
  • [7] R. Zallen, The physics of amorphous solids, PWN, Warsaw, 1994 (in Polish).
  • [8] R. Babilas, R. Nowosielski, Iron - based bulk amorphous alloys, Archives of Materials Science and Engineering 44/1 (2010) 5-27.
  • [9] A. Inoue, B. Shen, A. Takeuchi, Fabrication, properties and applications of bulk glassy alloys in late transition metal-based systems, Materials Science and Engineering A 441 (2006) 18-25,
  • [10] Ch. Chang, B. Shen, A. Inoue, Synthesis of bulk glassy alloys in the (Fe,Co,Ni)-B-Si-Nb system, Materials Science and Engineering A 449-451 (2007) 239-242.
  • [11] C. Suryanarayana, A. Inoue, Bulk metallic glasses, CRC Press, 2011.
  • [12] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Materials Science and Engineering R 44 (2004) 45-89.
  • [13] R. Nowosielski, R. Babilas, Preparation, structure and properties of Fe-based bulk metallic glasses, Journal of Achievements in Materials and Manufacturing Engineering 40/2 (2010) 123-130.
  • [14] A. Inoue, B.L. Shen, C.T. Chang, Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa, Intermetallics 14 (2006) 936-944.
  • [15] S. Griner, R. Babilas, R. Nowosielski, Structure and properties changes of Fe78Si9B13 metallic glass by low-temperature thermal activation process, Journal of Achievements in Materials and Manufacturing Engineering 50/1 (2012) 18-25.
  • [16] C.L. Choy, K.W. Tong, H.K. Wong, W.P. Leung, Thermal conductivity of amorphous alloys above room temperature, Journal of Applied Physics 70/9 (1991) 4919-4925.
  • [17] M. Yamasaki, S. Kagao, Y. Kawamura, Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass, Scripta Materialia 53 (2005) 63-67.
  • [18] U. Harms, T.D. Shen, R.B. Schwarz, Thermal conductivity of Pd40Ni40.xCuxP20 metallic glasses, Scripta Materialia 47 (2004) 411-414.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-efd1535f-7ee0-47be-914a-0a04cbe9ffef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.