Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 5 | 260--269
Tytuł artykułu

A systematic review: security information for agent approaches in networks - models and methods

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Przegląd systematyczny: informacje o bezpieczeństwie dla podejść agentowych w sieciach - modele i metody
Języki publikacji
EN
Abstrakty
EN
The proliferation of dangers to transmitting vital information across a communication channel has resulted from the advancement of communication systems. One of the security information is hiding secret information using agent approaches for clandestine transmission, protecting against data theft across increasing networks. Hence, it is often employed to address data security concerns. It's difficult to choose the right cover image to hide vital information; therefore, researchers used AI and agent-based algorithms to help secure information hiding. This investigation looked at Web of Science, PubMed, Science Direct, IEEE Xplore, and Scopus. A collection of 658 articles from 2018 to 2022 is gathered to give a better picture and deeper knowledge of academic publications through a final selection of 66 papers based on our exclusion and inclusion criteria. The selected articles were organized by resemblance, objectivity, and goal. First, "cover multimedia selection based on agent approaches" (n = 49). This category contains two subparts: (a) Selection based on agent techniques towards steganography system and (b) Selection based on agent techniques towards steganalysis system" (n = 17). This systematic study highlighted the motives, taxonomy, difficulties and recommendations of cover image selection study employing agent methodologies that require synergistic consideration. In order to execute the recommended research solution for an integrated agent-steganography system, this systematic study emphasizes the unmet obstacles and provides a thorough scientific analysis. Finally, the current study critically reviews the literature, addresses the research gaps, and highlights the available datasets for steganography systems, AI algorithms and agent techniques, and the evaluation matrices collected from the closing papers.
PL
Rozprzestrzenianie się zagrożeń związanych z przesyłaniem ważnych informacji przez kanał komunikacyjny wynika z rozwoju systemów komunikacyjnych. Jedną z informacji o bezpieczeństwie jest ukrywanie tajnych informacji za pomocą agentów do tajnej transmisji, chroniąc przed kradzieżą danych w rozrastających się sieciach. Dlatego jest często używany do rozwiązywania problemów związanych z bezpieczeństwem danych. Trudno jest wybrać odpowiedni obraz na okładkę, aby ukryć ważne informacje; dlatego badacze wykorzystali sztuczną inteligencję i algorytmy oparte na agentach, aby pomóc w zabezpieczeniu ukrywania informacji. Dochodzenie to dotyczyło Web of Science, PubMed, Science Direct, IEEE Xplore i Scopus. Zebrano zbiór 658 artykułów z lat 2018-2022, aby dać lepszy obraz i głębszą wiedzę na temat publikacji akademickich poprzez ostateczny wybór 66 artykułów w oparciu o nasze kryteria wykluczenia i włączenia. Wybrane artykuły zostały uporządkowane według podobieństwa, obiektywności i celu. Po pierwsze, „obejmij wybór multimediów w oparciu o podejście agenta” (n = 49). Ta kategoria zawiera dwie podczęści: (a) Selekcja oparta na technikach agentowych w kierunku systemu steganografii oraz (b) Selekcja oparta na technikach agentowych w kierunku systemu steganalizy” (n = 17). To systematyczne badanie podkreśliło motywy, taksonomię, trudności i zalecenia dotyczące pokrycia badanie selekcji obrazów wykorzystujące metodologie agentów, które wymagają rozważenia synergii. W celu wykonania zalecanego rozwiązania badawczego dla zintegrowanego systemu agent-steganografia, to systematyczne badanie podkreśla niespełnione przeszkody i zapewnia dogłębną analizę naukową. Wreszcie, obecne badanie dokonuje krytycznego przeglądu literatury , odnosi się do luk badawczych i podkreśla dostępne zestawy danych dla systemów steganografii, algorytmów sztucznej inteligencji i technik agentów oraz macierze oceny zebrane z dokumentów końcowych.
Wydawca

Rocznik
Strony
260--269
Opis fizyczny
Bibliogr. 120 poz., rys., tab.
Twórcy
Bibliografia
  • [1] R. F. Mansour and M. R. Girgis, "Steganography-based transmission of medical images over unsecure network for telemedicine applications," Comput. Mater. Contin., vol. 68, no. 3, pp. 4069–4085, 2021.
  • [2] M. M. Sayah, K. M. Redouane, and K. Amine, "Secure transmission and integrity verification for color medical images in telemedicine applications," Multimed. Tools Appl., 2022.
  • [3] J. Dey, A. Sarkar, S. Karforma, and B. Chowdhury, "Metaheuristic secured transmission in Telecare Medical Information System (TMIS) in the face of post-COVID-19," J. Ambient Intell. Humaniz. Comput., 2021.
  • [4] R. Gurunath and D. Samanta, "Advances in text steganographytheory and research: A critical review and gaps," in Multidisciplinary Approach to Modern Digital Steganography, 2021, pp. 50–74.
  • [5] I. J. Kadhim, P. Premaratne, P. J. Vial, and B. Halloran, "Comprehensive survey of image steganography: Techniques, Evaluations, and trends in future research," Neurocomputing, vol. 335, pp. 299–326, 2019.
  • [6] V. H. Iyer, S. Mahesh, R. Malpani, M. Sapre, and A. J. Kulkarni, "Adaptive Range Genetic Algorithm: A hybrid optimization approach and its application in the design and economic optimization of Shell-and-Tube Heat Exchanger," Eng. Appl. Artif. Intell., vol. 85, pp. 444–461, 2019.
  • [7] S. Liu and D. Xu, "A robust steganography method for HEVC based on secret sharing," Cogn. Syst. Res., vol. 59, pp. 207–220, 2020.
  • [8] I. Oregi, J. Del Ser, A. Pérez, and J. A. Lozano, "Robust image classification against adversarial attacks using elastic similarity measures between edge count sequences," Neural Networks, vol. 128, pp. 61–72, 2020.
  • [9] H. T. S. Alrikabi and H. T. Hazim, "Enhanced Data Security of Communication System Using Combined Encryption and Steganography," Int. J. Interact. Mob. Technol., vol. 15, no. 16, pp. 144–157, 2021.
  • [10] N. Uniyal, G. Dobhal, A. Rawat, and A. Sikander, "A Novel Encryption Approach Based on Vigenère Cipher for Secure Data Communication," Wirel. Pers. Commun., vol. 119, no. 2, pp. 1577–1587, 2021.
  • [11] Halboos, E.H.J. and Albakry, A.M., 2022. Hiding text using the least significant bit technique to improve cover image in the steganography system. Bulletin of Electrical Engineering and Informatics, 11(6), pp.3258-3271.
  • [12] Alhyani, N.J., Hamid, O.K. and Ibrahim, A.M., 2021. Efficient terrestrial digital video broadcasting receivers based OFDM techniques. Przegląd Elektrotechniczny, 97.
  • [13] P. Bedi and A. Singhal, "Estimating cover image for universal payload region detection in stego images," J. King Saud Univ. - Comput. Inf. Sci., 2022.
  • [14] O. Younis, "Hiding a Secret Information in Image Using Gravitational Search Algorithm," Diyala J. Pure Sci., vol. 14, no. 1, pp. 44–56, 2018.
  • [15] R. Bala Krishnan, N. Rajesh Kumar, N. R. Raajan, G. Manikandan, A. Srinivasan, and D. Narasimhan, "An Approach for Attaining Content Confidentiality on Medical Images Through Image Encryption with Steganography," Wirel. Pers. Commun., 2021.
  • [16] J. Wu et al., "A High-Security mutual authentication system based on structural color-based physical unclonable functions labels," Chem. Eng. J., vol. 439, p. 135601, 2022.
  • [17] U. Khadam, M. M. Iqbal, S. Saeed, S. H. Dar, A. Ahmad, andM. Ahmad, "Advanced security and privacy technique for digital text in smart grid communications," Comput. Electr. Eng., vol. 93, p. 107205, 2021.
  • [18] C.-F. Lee, C.-C. Chang, X. Xie, K. Mao, and R.-H. Shi, "Anadaptive high-fidelity steganographic scheme using edge detection and hybrid hamming codes," Displays, vol. 53, pp. 30–39, 2018.
  • [19] I. J. Kadhim, P. Premaratne, and P. J. Vial, "Improved imagesteganography based on super-pixel and coefficient-planeselection," Signal Processing, vol. 171, p. 107481, 2020.
  • [20] R. Meng, Q. Cui, Z. Zhou, Z. Li, Q. M. Jonathan Wu, and X.Sun, "High-Capacity Steganography Using Object Addition Based Cover Enhancement for Secure Communication in Networks," IEEE Trans. Netw. Sci. Eng., vol. 9, no. 2, pp. 848–862, 2022.
  • [21] A. Ahyuna, S. Syamsuddin, H. Hasriani, A. Ardimansyah, I. Irmawati, and S. Wahyuni, "The Application Of LSB Steganography For Secure Text and Hiding Confidential Information Using AES Cryptography," in 2021 3rd International Conference on Cybernetics and Intelligent System (ICORIS), 2021, pp. 1–5.
  • [22] W. Xiao, M. Li, M. Chen, and A. Barnawi, "Deep interaction: Wearable robot-assisted emotion communication for enhancing perception and expression ability of children with Autism Spectrum Disorders," Futur. Gener. Comput. Syst., vol. 108, pp. 709–716, 2020.
  • [23] S. A. El_Rahman, "A comparative analysis of image steganography based on DCT algorithm and steganography tool to hide nuclear reactors confidential information," Comput. Electr. Eng., vol. 70, pp. 380–399, 2018.
  • [24] J. Li, X. Luo, Y. Zhang, P. Zhang, C. Yang, and F. Liu, "Extracting embedded messages using adaptive steganography based on optimal syndrome-trellis decoding paths," Digit. Commun. Networks, 2021.
  • [25] M. Zheng, J. Jiang, S. Wu, S. Zhong, and Y. Liu, "Contentadaptive selective steganographer detection via embedding probability estimation deep networks," Neurocomputing, vol. 365, pp. 336–348, 2019.
  • [26] J. Lin, Y. Wang, M. Han, Y. Yang, and M. Lei, "A Lightweight Embedding Probability Estimation Algorithm Based on LBP for Adaptive Steganalysis," in Proceedings of the 2021 IEEE International Conference on Progress in Informatics and Computing, PIC 2021, 2021, pp. 352–357.
  • [27] M. K. K. Shyla, K. B. B. S. Kumar, R. Kumar, and R. K. Das, "Image steganography using genetic algorithm for cover image selection and embedding," Soft Comput. Lett., vol. 3, p. 100021, 2021.
  • [28] I. J. Kadhim, P. Premaratne, and P. J. Vial, "High capacity adaptive image steganography with cover region selection using dual-tree complex wavelet transform," Cogn. Syst. Res., vol. 60, pp. 20–32, 2020.
  • [29] S. M. Hashim and D. A. Alzubaydi, "Identify the Presence of Hidden Information Based on Lower Coefficients Value of 2DHWT Sub-bands," in Proceedings of the 7th International Engineering Conference "Research and Innovation Amid Global Pandemic", IEC 2021, 2021.
  • [30] Y. Luo, C. Yao, Y. Mo, B. Xie, G. Yang, and H. Gui, "A creative approach to understanding the hidden information within the business data using Deep Learning," Inf. Process. Manag., vol. 58, no. 5, 2021.
  • [31] H. Yang, Y. Bao, Z. Yang, S. Liu, Y. Huang, and S. Jiao, "Linguistic Steganalysis via Densely Connected LSTM with Feature Pyramid," in Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security, 2020, pp. 5–10.
  • [32] A. M. Kadan and I. A. Sazanovetz, "Detection of hidden information in graphic files using machine learning," in CEUR Workshop Proceedings, 2021, vol. 2834, pp. 185–194, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-2.0-103255260&partnerID=40&md5=c63b55781162b0bf787d2abb70cd1ca7.
  • [33] S. Çalkavur, "Public-Key Cryptosystems and Bounded Distance Decoding of Linear Codes," Entropy, vol. 24, no. 4, 2022.
  • [34] P. Sarosh, S. A. Parah, G. M. Bhat, A. A. Heidari, and K. Muhammad, "Secret Sharing-based Personal Health Records Management for the Internet of Health Things," Sustain. Cities Soc., vol. 74, p. 103129, 2021.
  • [35] A. Anuradha and H. B. Pandit, "Unique Stego Key Generationfrom Fingerprint Image in Image Steganography," Smart Innovation, Systems and Technologies, vol. 196. pp. 33–42, 2021.
  • [36] J. J. Ranjani and C. Jeyamala, "Chapter 9 - Machine learning algorithms for medical image security," in Intelligent Data Centric Systems, A. K. Singh and M. B. T.-I. D. S. S. for e-H. A. Elhoseny, Eds. Academic Press, 2020, pp. 169–183.
  • [37] M. Haghi Kashani, M. Madanipour, M. Nikravan, P. Asghari, and E. Mahdipour, "A systematic review of IoT in healthcare: Applications, techniques, and trends," J. Netw. Comput. Appl., vol. 192, p. 103164, 2021.
  • [38] A. Iskhakova, A. Iskhakov, R. Meshcheryakov, and E. Jharko, "Method of Verification of Robotic Group Agents in the Conditions of Communication Facility Suppression," IFAC PapersOnLine, vol. 52, no. 13, pp. 1397–1402, 2019.
  • [39] S. A. Chaudhry, T. Shon, F. Al-Turjman, and M. H. Alsharif, "Correcting design flaws: An improved and cloud assisted key agreement scheme in cyber physical systems," Comput. Commun., vol. 153, pp. 527–537, 2020.
  • [40] M. Saračević, S. Adamović, V. Miškovic, N. Maček, and M. Šarac, "A novel approach to steganography based on the properties of Catalan numbers and Dyck words," Futur. Gener. Comput. Syst., vol. 100, pp. 186–197, 2019.
  • [41] H. Kang, H. Wu, and X. Zhang, "Generative text steganography based on LSTM network and attention mechanism with keywords," IS T Int. Symp. Electron. Imaging Sci. Technol., vol. 2020, no. 4, pp. 1–8, 2020.
  • [42] N. Wu et al., "STBS-Stega: Coverless text steganography based on state transition-binary sequence," Int. J. Distrib. Sens. Networks, vol. 16, no. 3, 2020.
  • [43] F. A. Baothman and B. S. Edhah, "Toward agent - based LSB image steganography system," pp. 903–919, 2021.
  • [44] P. Wang, B. Chen, T. Xiang, and Z. Wang, "Lattice-based public key searchable encryption with fine-grained access control for edge computing," Futur. Gener. Comput. Syst., vol. 127, pp. 373–383, 2022.
  • [45] K. Vandana and S. K. Kumari, "Improving Security with Efficient Key Management in Public cloud using Hybrid AES, ECC and LSB Steganography comparing with Novel hybrid Cube Base Obfuscation," in 2022 International Conference on Business Analytics for Technology and Security, ICBATS 2022, 2022, vol. 2022-Janua.
  • [46] M. Walshe, G. Epiphaniou, H. Al-Khateeb, M. Hammoudeh, V. Katos, and A. Dehghantanha, "Non-interactive zero knowledge proofs for the authentication of IoT devices in reduced connectivity environments," Ad Hoc Networks, vol. 95, p. 101988, 2019.
  • [47] M. Chen, M. Boroumand, J. Fridrich, and S. Binghamton, "Deep learning regressors for quantitative steganalysis," Electron. Imaging, vol. 2018, pp. 1–7, 2018.
  • [48] Y. Li, J. Zhang, Z. Yang, and R. Zhang, "Topic-aware Neural Linguistic Steganography Based on Knowledge Graphs," ACM/IMS Trans. Data Sci., vol. 2, no. 2, pp. 1–13, 2021.
  • [49] A. Di Vaio, S. Hasan, R. Palladino, F. Profita, and I. Mejri, "Understanding knowledge hiding in business organizations: A bibliometric analysis of research trends, 1988–2020," J. Bus. Res., vol. 134, pp. 560–573, 2021.
  • [50] R. Wazirali, R. Ahmad, and A. A.-K. Abu-Ein, "Sustaining accurate detection of phishing URLs using SDN and feature selection approaches," Comput. Networks, vol. 201, p. 108591, 2021.
  • [51] Y. Chen, H. Wang, H. Wu, Y. Zhou, L. Zhou, and Y. Chen, "Exploiting texture characteristics and spatial correlations for robustness metric of data hiding with noisy transmission," IET Image Process., vol. 15, no. 13, pp. 3160–3171, 2021.
  • [52] S. Jin, F. Liu, C. Yang, Y. Ma, and Y. Liu, "Feature Selection of the Rich Model Based on the Correlation of Feature Components," Secur. Commun. Networks, vol. 2021, 2021.
  • [53] A. Ullah, K. Muhammad, T. Hussain, and S. W. Baik, "Conflux LSTMs Network: A Novel Approach for Multi-View Action Recognition," Neurocomputing, vol. 435, pp. 321–329, 2021.
  • [54] D. Shahi, R. S. V Vinod Kumar, and V. K. Reshma, "High Capacity Reversible Steganography on CMY and HSI Color Images Using Image Interpolation," Webology, vol. 18, pp. 133–148, 2021.
  • [55] N. Mukherjee (Ganguly), G. Paul, and S. K. Saha, "Two-point FFT-based high capacity image steganography using calendar based message encoding," Inf. Sci. (Ny)., vol. 552, pp. 278–290, 2021.
  • [56] L. Mo, L. Zhu, J. Ma, D. Wang, and H. Wang, "MDRSteg: Large-capacity image steganography based on multi-scale dilated ResNet and combined chi-square distance loss," J. Electron. Imaging, vol. 30, no. 1, 2021.
  • [57] M. L. Bensaad and M. B. Yagoubi, "High capacity diacritics based method for information hiding in Arabic text," in 2011 International Conference on Innovations in Information Technology, 2011, pp. 433–436.
  • [58] Y. Liu, G. Feng, C. Qin, H. Lu, and C.-C. Chang, "High-capacity reversible data hiding in encrypted images based on hierarchical quad-tree coding and multi-MSB prediction," Electron., vol. 10, no. 6, pp. 1–23, 2021.
  • [59] D. Guo, R. Y. Zhong, P. Lin, Z. Lyu, Y. Rong, and G. Q. Huang, "Digital twin-enabled Graduation Intelligent Manufacturing System for fixed-position assembly islands," Robot. Comput. Integr. Manuf., vol. 63, p. 101917, 2020.
  • [60] F. Meng, Z. Wang, S. Zhang, B. Ju, and B. Tang, "Bioinspired quasi-amorphous structural color materials toward architecturaldesigns," Cell Reports Phys. Sci., vol. 2, no. 7, p. 100499, 2021.
  • [61] Q. Giboulot, R. Cogranne, and P. Bas, "Detectability Based JPEG Steganography Modeling the Processing Pipeline: The Noise-Content Trade-off," IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 2202–2217, 2021.
  • [62] T. Sun et al., "Local warning integrated with global feature based on dynamic spectra for FAIMS data analysis in detection of clinical wound infection," Sensors Actuators B Chem., vol. 298, p. 126926, 2019.
  • [63] S. K. Moon, "Software and hardware-based audio-video crypto steganalysis model for enhancing robustness and imperceptibility of secured data," Multimed. Tools Appl., vol. 81, no. 15, pp. 21047–21081, 2022.
  • [64] O. Evsutin and K. Dzhanashia, "Watermarking schemes for digital images: Robustness overview," Signal Process. Image Commun., vol. 100, 2022.
  • [65] M. Huai, T. Zheng, C. Miao, L. Yao, and A. Zhang, "On the Robustness of Metric Learning: An Adversarial Perspective," ACM Trans. Knowl. Discov. Data, vol. 16, no. 5, 2022.
  • [66] R. Tabares-Soto et al., “12 - Digital media steganalysis,” M. B. T.-D. M. S. Hassaballah, Ed. Academic Press, 2020, pp. 259–293.
  • [67] S. Zheng, C. Yin, and B. Wu, "Keys as Secret Messages: Provably Secure and Efficiency-balanced Steganography on Blockchain," in 19th IEEE International Symposium on Parallel and Distributed Processing with Applications, 11th IEEE International Conference on Big Data and Cloud Computing, 14th IEEE International Conference on Social Computing and Networking and 11th IEEE Internation, 2021, pp. 1269–1278.
  • [68] N. Mohamed, T. Rabie, I. Kamel, and K. Alnajjar, "Detecting secret messages in images using neural networks," 2021.
  • [69] J. PejaŚ, Ł. Cierocki, J. PejaS, and L. Cierocki, "Reversible data hiding scheme for images using gray code pixel value optimization," in Procedia Computer Science, 2021, vol. 192, pp. 328–337.
  • [70] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, "Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement," Int. J. Surg., vol. 8, no. 5, pp. 336–341, 2010.
  • [71] H. N. Abed, A. L. Ahmed, N. H. Hassoon, I. S. Albayaty, A. Lec, and H. Noman, "Hiding Information In An Image Based On Bats 2018. 128, .p ,المجلة العراقية لتكنولوجيا المعلومات ",Algorithm
  • [72] A. I. Al-hussein, M. S. Alfaras, and T. A. Kadhim, "Text hiding in an image using least significant bit and ant colony optimization," Mater. Today Proc., no. xxxx, 2021.
  • [73] H. M. Pandey, "Secure medical data transmission using afusion of bit mask oriented genetic algorithm, encryption and steganography," Futur. Gener. Comput. Syst., vol. 111, pp. 213–225, 2020.
  • [74] S. Hossain, S. Mukhopadhyay, B. Ray, S. K. Ghosal, and R. Sarkar, "A secured image steganography method based on ballot transform and genetic algorithm," Multimed. Tools Appl., 2022.
  • [75] V. Sabeti, M. Sobhani, and S. M. H. Hasheminejad, "An adaptive image steganography method based on integer wavelet transform using genetic algorithm," Comput. Electr. Eng., vol. 99, p. 107809, 2022.
  • [76] P. D. Shah and R. S. Bichkar, "A secure spatial domain image steganography using genetic algorithm and linear congruential generator," Adv. Intell. Syst. Comput., vol. 632, pp. 119–129, 2018.
  • [77] A. H. Mohsin et al., "PSO–Blockchain-based image steganography: towards a new method to secure updating and sharing COVID-19 data in decentralized hospitals intelligence architecture," Multimed. Tools Appl., vol. 80, no. 9, pp. 14137–14161, 2021.
  • [78] V. Gautam, "MASSS—Multi-agent-Based Steganography Security System for VANET BT - Proceedings of 3rd International Conference on Computing Informatics and Networks," 2021, pp. 159–172.
  • [79] M. Kumar and T. Hussaini, "A Neural Network Based Image Steganography Method using Cyclic Chaos and Integer Wavelet Transform," in 2021 Asian Conference on Innovation in Technology (ASIANCON), 2021, pp. 1–6.
  • [80] K. Sharma, A. Aggarwal, T. Singhania, D. Gupta, and A. Khanna, "Hiding Data in Images Using Cryptography and Deep Neural Network," J. Artif. Intell. Syst., vol. 1, no. 1, pp. 143–162, 2019.
  • [81] Z. L. Yang, X. Q. Guo, Z. M. Chen, Y. F. Huang, and Y. J. Zhang, "RNN-Stega: Linguistic Steganography Based on Recurrent Neural Networks," IEEE Trans. Inf. Forensics Secur., vol. 14, no. 5, pp. 1280–1295, 2019.
  • [82] R. Meng, S. G. Rice, J. Wang, and X. Sun, "A fusion steganographic algorithm based on faster R-CNN," Comput. Mater. Contin., vol. 55, no. 1, pp. 1–16, 2018.
  • [83] W. Tang, B. Li, S. Tan, M. Barni, and J. Huang, "CNN-BasedAdversarial Embedding for Image Steganography," IEEE Trans. Inf. Forensics Secur., vol. 14, no. 8, pp. 2074–2087, 2019.
  • [84] S. D. Desai, N. Patil, S. R. Nirmala, S. Kulkarni, P. D. Desai, and D. Shinde, "Deep Neural Network based Medical Image Steganography," in 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN), 2022, pp. 1–5.
  • [85] R. Meng, Q. Cui, Z. Zhou, Z. Fu, and X. Sun, "A Steganography Algorithm Based on CycleGAN for Covert Communication in the Internet of Things," IEEE Access, vol. 7, pp. 90574–90584, 2019.
  • [86] S. Kumar, A. Singh, and M. Kumar, "Information hiding withadaptive steganography based on novel fuzzy edge identification," Def. Technol., vol. 15, no. 2, pp. 162–169, 2019.
  • [87] H. S. Yusuf and H. Hagras, "Towards Image Steganography Using Type-2 Fuzzy Logic and Edge Detection," 2018 10th Comput. Sci. Electron. Eng. Conf. CEEC 2018 - Proc., pp. 75–78, 2019.
  • [88] I. Shafi et al., "An adaptive hybrid fuzzy-wavelet approach for image steganography using bit reduction and pixel adjustment," Soft Comput., vol. 22, no. 5, pp. 1555–1567, 2018.
  • [89] S. Wu, S. Zhong, and Y. Liu, "Deep residual learning for image steganalysis," Multimed. Tools Appl, vol. 77, 2018.
  • [90] Y. Ge, T. Zhang, H. Liang, Q. Jiang, and D. Wang, "A noveltechnique for image steganalysis based on separable convolution and adversarial mechanism," Electron., vol. 10, no. 22, pp. 1–15, 2021.
  • [91] L. Xiang, G. Guo, J. Yu, V. S. Sheng, and P. Yang, "A convolutional neural network-based linguistic steganalysis for synonym substitution steganography," Math Biosci Eng, vol. 17, no. 2, pp. 1041–1058, 2020.
  • [92] Z. Yang, N. Wei, J. Sheng, Y. Huang, and Y.-J. Zhang, "TS CNN: Text Steganalysis from Semantic Space Based on Convolutional Neural Network," no. Bennett 2004, 2018, [Online]. Available: http://arxiv.org/abs/1810.08136.
  • [93] Z. Jin, Y. Yang, Y. Chen, and Y. Chen, "IAS-CNN: Image adaptive steganalysis via convolutional neural network combined with selection channel," Int. J. Distrib. Sens. Networks, vol. 16, no. 3, 2020.
  • [94] C. Li, Y. Jiang, and M. Cheslyar, "Embedding image throughgenerated intermediate medium using deep convolutional generative adversarial network," Comput. Mater. Contin., vol. 56, no. 2, pp. 313–324, 2018.
  • [95] X. Duan, K. Jia, B. Li, D. Guo, E. Zhang, and C. Qin, "Reversible image steganography scheme based on a U-net structure," IEEE Access, vol. 7, pp. 9314–9323, 2019.
  • [96] J. Mondal and M. Das, "A Novel Multilevel RDH Approach forMedical Image Authentication," Advances in Intelligent Systems and Computing, vol. 1311 AISC. pp. 513–520, 2021.
  • [97] A. A.-N. Patwary et al., "Towards secure fog computing: A survey on trust management, privacy, authentication, threats and access control," Electron., vol. 10, no. 10, 2021.
  • [98] M. H. Barkadehi, M. Nilashi, O. Ibrahim, A. Zakeri Fardi, and S. Samad, "Authentication systems: A literature review and classification," Telemat. Informatics, vol. 35, no. 5, pp. 1491–1511, 2018.
  • [99] C.-C. Chang, "Neural Reversible Steganography with Long Short-Term Memory," Secur. Commun. Networks, vol. 2021, 2021.
  • [100] X. Zhu, Y. Dang, and S. Ding, "Using a self-adaptive greyfractional weighted model to forecast Jiangsu's electricity consumption in China," Energy, vol. 190, p. 116417, 2020.
  • [101] P. Wu, Y. Yang, and X. Li, "StegNet: Mega Image steganography capacity with deep convolutional network," Futur. Internet, vol. 10, no. 6, pp. 1–15, 2018.
  • [102] X. Duan, N. Liu, M. Gou, W. Wang, and C. Qin, "SteganoCNN: Image steganography with generalization ability based on convolutional neural network," entropy, vol. 22, no. 10, pp. 1–15, 2020.
  • [103] O. Byrnes, W. La, H. Wang, C. Ma, M. Xue, and Q. Wu, "Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography," vol. 1, no. 1, pp. 1–35, 2021, [Online]. Available: http://arxiv.org/abs/2107.09287.
  • [104] M. K. Hasan et al., "An improved watermarking algorithm for robustness and imperceptibility of data protection in the perception layer of internet of things," Pattern Recognit. Lett., vol. 152, pp. 283–294, 2021.
  • [105] H. Fu, X. Zhao, and X. He, "Improving Anticompression Robustness of JPEG Adaptive Steganography Based on Robustness Measurement and DCT Block Selection," Secur. Commun. Networks, vol. 2021, 2021.
  • [106] A. Priyadharshini, R. Umamaheswari, N. Jayapandian, and S. Priyananci, "Securing medical images using encryption and LSB steganography," 2021.
  • [107] L. Aversano, M. L. Bernardi, M. Cimitile, and R. Pecori, "A systematic review on Deep Learning approaches for IoT security," Comput. Sci. Rev., vol. 40, p. 100389, 2021.
  • [108] H. Ruiz, M. Chaumont, M. Yedroudj, A. O. Amara, F. Comby, and G. Subsol, "Analysis of the Scalability of a DeepLearning Network for Steganography 'Into the Wild,'” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12666 LNCS. pp. 439–452, 2021.
  • [109] I. Alodat and M. Alodat, “Detection of Image Malware Steganography Using Deep Transfer Learning Model,” Lecture Notes in Networks and Systems, vol. 287. pp. 323–333, 2022, DOI: 10.1007/978-981-16-5348-3_26.
  • [110] F. T. A. Hussien, A. M. S. Rahma, and H. B. A. Wahab, “A Secure E-commerce Environment Using Multi-agent System,” Intell. Autom. Soft Comput., vol. 34, no. 1, pp. 499–514, 2022.
  • [111] S. Basu, M. Karuppiah, M. Nasipuri, A. K. Halder, and N. Radhakrishnan, “Bio-inspired cryptosystem with DNA cryptography and neural networks,” J. Syst. Archit., vol. 94, pp. 24–31, 2019.
  • [112] X. Hao, W. Ren, R. Xiong, T. Zhu, and K.-K. R. Choo, “Asymmetric cryptographic functions based on generative adversarial neural networks for Internet of Things,” Futur. Gener. Comput. Syst., vol. 124, pp. 243–253, 2021.
  • [113] W. Lin, X. Zhu, W. Ye, C.-C. Chang, Y. Liu, and C. Liu, “An Improved Image Steganography Framework Based on y Channel Information for Neural Style Transfer,” Secur. Commun. Networks, vol. 2022, 2022.
  • [114] C.-C. Chang, “Bayesian Neural Networks for Reversible Steganography,” IEEE Access, vol. 10, pp. 36327–36334, 2022.
  • [115] S. M. Thampi and K. C. Sekaran, “Content Based Image Retrieval with Mobile Agents and Steganography,” p. 6, 2004, [Online]. Available: http://arxiv.org/abs/cs/0411041.
  • [116] B. Rahul and K. Kuppusamy, “Efficiency Analysis of Cryptographic Algorithms for Image Data Security at Cloud Environment,” IETE J. Res., 2021.
  • [117] H. Sun and Z. Qu, “High Efficiency Quantum Image Steganography Protocol Based on ZZW Framework,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Bioinformatics), vol. 12737 LNCS. pp. 400–411, 2021.
  • [118] M. Hussain, A. W. A. Wahab, Y. I. Bin Idris, A. T. S. Ho,and K.-H. Jung, “Image steganography in spatial domain: A survey,” Signal Process. Image Commun., vol. 65, pp. 46–66, 2018.
  • [119] B. Yamini and R. Sabitha, “Image steganalysis: real-time adaptive colour image segmentation for hidden message retrieval and Matthew’s correlation coefficient calculation,” Int. J. Inf. Comput. Secur., vol. 17, no. 1–2, pp. 83–103, 2022.
  • [120] R. Gurunath, A. H. Alahmadi, D. Samanta, M. Z. Khan, and A. Alahmadi, “A Novel Approach for Linguistic Steganography Evaluation Based on Artificial Neural Networks,” IEEE Access, vol. 9, pp. 120869–120879, 2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-efbbaca9-1940-44cc-bf6e-f65635fad197
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.