Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 24, nr 3(81) | 89--110
Tytuł artykułu

Optimizing high-performance concrete properties containing blast furnace slag and marble powder

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Building and industrialization-related environmental harm is becoming an increasingly serious concern. In an effort to create an eco-friendly high-performance concrete (HPC), this paper addresses the idea of partially replacing cement with recyclable industrial waste. The current study will experimentally examine the slump, the strengths of compressive (SC) and porosity (P) of fifteen HPC mixtures manufactured from locally available resources. Hence, the effects of utilizing marble powder (MP) as a mineral additive in binary mixes and ternary with cement (PC) and granulated ground blast furnace slag (GGBFS) on the HPCs properties were studied in order to develop statistical models based on mixture design. Highly accurate prediction graphs and models were created for HPC workability, P at 28-day, SC at 7 and 28-day. All responses have satisfactory coefficients of correlation (R2 ≥ 0.76). Replacing cement with GGBFS causes a rise in slump in mixtures. Nevertheless, that only remains relevant when the mixtures have a small MP percentage (≤ 25%). A minor decrease in SC can be attributed by an increase of GGBFS. After 28-day, using GGBFS alone caused a little drop in SC; however, when GGBFS and PC were mixed, SC increased, in comparison with reference composition, and the porosity was reduced. Conversely, SC is superior with lower porosity when a small amount of MP is utilized. The best combination is HPC14, containing 5% GGBFS; it offers an optimal equilibrium among the three qualities; with HPC4's (15%GGBFS+5%MP) qualities, being almost identical to those of reference HPC15, a lower amount of cement may also be utilized. Findings encourage the use of MP and GGBFS to partially replace cement to produce eco-friendly and cost-effective HPC. An extremely high correlation coefficient indicated a strong relationship between P and SC.
Wydawca

Rocznik
Strony
89--110
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • Architecture Department, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
autor
  • Civil Engineering Department, University of Djelfa, Djelfa, Algeria
  • Laboratory of Mechanical and Materials Development, University of Djelfa, Djelfa, Algeria
  • Laboratory Built in Environment, Faculty of Civil Engineering USTHB, Algiers, Algeria
  • Civil Engineering Department, University of Djelfa, Djelfa, Algeria, s.guettala@univ-djelfa.dz
  • Civil Engineering Research Laboratory, University of Biskra, Biskra, Algeria
Bibliografia
  • 1. P.C. Aïtcin, J.M. Lessard, The composition and design of high-strength concrete and ultrahigh-strength concrete, Developments in the Formulation and Reinforcement of Concrete, Elsevier, 2019, pp. 171-192. Second Edition), Woodhead Publishing Series in Civil and Structural Engineering.
  • 2. E. Cerro-Prada, R. Pacheco-Torres, F. Varela, Effect of multi-walled carbon nanotubes on strength and electrical properties of cement mortar, Mater. 14 (2021) 79.
  • 3. A. Bahari, A. Sadeghi-Nik, F.U.A. Shaikh, A. Sadeghi-Nik, E. Cerro-Prada, E. Mirshafiei, M. Roodbari, Experimental studies on rheological, mechanical, and microstructure properties of self-compacting concrete containing perovskite nanomaterial, Struct. Concr. 23 (2022) 564-78.
  • 4. ACI 211.4R-08, Guide for selecting proportions for high-strength concrete using Portland cement and other cementitious materials, USA, 2008.
  • 5. A.K. Akhnoukh, Accelerated bridge construction projects using high performance concrete, Case Stud. Constr. Mater. 12 (2020) e00313.
  • 6. Z. Tang, W. Li, V.W.Y. Tam, C. Xue, Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials, Resour. Conserv. Recycl.: X. 6 (2020) 100036.
  • 7. B.S. Divsholi, T.Y.D. Lim, S. Teng, Durability properties and microstructure of ground granulated blast furnace slag cement concrete, Int. J. Concr. Struct. Mater. 8 (2014) 157-64.
  • 8. H. Beushausen, M. Alexander, Y. Ballim, Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios, Constr. Build. Mater. 29 (2012) 533-540.
  • 9. J.L. Wang, K.M. Niu, Z.F. Yang, M.K. Zhou, L.Q. Sun, G.J. Ke, Effects of fly ash and ground granulated blast-furnaces slag on properties of high-strength concrete, Key. Eng. Mater. 405-406 (2009) 219-25.
  • 10. S. Liu, Z. Wang, X. Li, Long-term properties of concrete containing ground granulated blast furnace slag and steel slag, Mag. Concr. Res. 66 (2014) 1095-103.
  • 11. H. Trong-Phuoc, S.H. Lanh, V.H. Quan, Experimental investigation on the performance of concrete incorporating fine dune sand and ground granulated blast-furnace slag, Constr. Build. Mater. 347 (2022) 128512.
  • 12. G. Pachideh, M. Gholhaki, Assessment of post-heat behavior of cement mortar incorporating silica fume and granulated blast-furnace slag, J. Struct. Fire Eng. 11 (2020) 221-46.
  • 13. X-Y. Wang and H-S. Lee, Modeling the hydration of concrete incorporating fly ash or slag, Cem. Concr. Res. 40 (2010) 984-96.
  • 14. A.M. Mhaya, G.F. Huseien, A.R. Zainal Abidin, M. Ismail, Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes, Constr. Build. Mater. 256 (2020) 119505.
  • 15. P. Ganesh and A.R. Murthy, Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material, Constr. Build. Mater. 197 (2019) 667-80.
  • 16. J. Ahmad, R. Martínez-García, M. Szelag, J. de-Prado-Gil, R. Marzouki, M. Alqurashi, E.E. Hussein, Effects of steel fibers (SF) and ground granulated blast furnace slag (GGBS) on recycled aggregate concrete, Mater. 14 (2021) 7497.
  • 17. A.A. Ramezanianpour, A. Pilvar, M. Mahdikhani, F. Moodi, Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength, Constr. Build. Mater. 25 (2011) 2472-9.
  • 18. S. Srikanth, C.B.R. Krishna, T. Srikanth, K.J.N. Sai Nitesh, V. Swamy Nadh, S. Kumar, S. Thanappan, Effect of nano ground granulated blast furnace slag (GGBS) volume % on mechanical behaviour of high-performance sustainable concrete, J. Nanomater. 2022 (2022) 5 pages. https://doi.org/10.1155/2022/3742194.
  • 19. R.B. Oza, M.Z. Kangda, M.R. Agrawal, P.R. Vakharia, D.M. Solanki, Marble dust as a binding material in concrete: A review, Mater. Today Proc. 60 (2022) 421-430.
  • 20. K. Vardhan, R. Siddique, S. Goyal, Strength, permeation and micro-structural characteristics of concrete incorporating waste marble, Constr. Build. Mater. 203 (2019) 45-55.
  • 21. H. Hebhoub, H. Aoun, M. Belachia, H. Houari, E. Ghorbel, Use of waste marble aggregates in concrete, Constr. Build. Mater. 25 (2011) 1167-71.
  • 22. A. Ergün, Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete, Constr. Build. Mater. 25 (2011) 806-12.
  • 23. O. Boughamsa, H. Hebhoub, L. Kherref, M. Belachia, A. Abdelouahed, R. Chaher, Valorization of marble’s waste as a substitute in sand concrete, Adv. Concr. Constr. 9 (2020) 217-25.
  • 24. A. Chawla, K.I. Syed Ahmed Kabeer, A.K. Vyas, Evaluation of strength and durability of lean concrete mixes containing marble waste as fine aggregate, Eur. J. Environ. Civ. Eng. 24 (2020) 1398-413.
  • 25. A.A. Aliabdo, A.M.A. Elmoaty, E.M. Auda, Re-use of waste marble dust in the production of cement and concrete, Constr. Build. Mater. 50 (2014) 28-41.
  • 26. V. Kumar, S. Singla, R. Garg, Strength and microstructure correlation of binary cement blends in presence of waste marble powder. Mater. Today Proc. 43 (2021) 857-62.
  • 27. Y. Wang, J. Xiao, J. Zhang, Z. Duan, Mechanical behavior of concrete prepared with waste marble powder, Sustain. 14 (2022) 4170.
  • 28. H.Y. Aruntaş, M. Gürü, M. Dayı, İ. Tekin, Utilization of waste marble dust as an additive in cement production,Mater. Des.31(2010) 4039-42.
  • 29. V. Corinaldesi, G. Moriconi, T.R. Naik, Characterization of marble powder for its use in mortar and concrete,Constr. Build. Mater. 24(2010) 113-7.
  • 30. C. Karakurt and M. Dumangöz, Rheological and durability properties of self-compacting concrete produced using marble dust and blast furnace slag, Mater. 15 (2022) 1795.
  • 31. A. Yahia, K.H. Khayat, M. Sayed, Statistical modelling of the coupled effect of mix design and rebar spacing on restricted flow characteristics of SCC, Constr. Build. Mater. 37 (2012) 699-706.
  • 32. J. Goupy, L. Creighton, Introduction to design of experiments with JMP examples, 3rd ed., Cary (NC): SAS Institute, 2007, p. 438.
  • 33. J. Goupy, La méthode des plans d’expérience, [The experience plans method], Dunod, Paris, 1988.
  • 34. T. Hadji, S. Guettala, M. Quéneudec, Mix design of high performance concrete with different mineral additions, World J. Eng. 18 (2021) 767-79.
  • 35. H. Ben Salah, B. Dalila, T. Bachir, Using a mixture design method to optimize the behavior of high-performance sand concrete, World J. Eng. 20 (2023) 877-87.
  • 36. R.H. Bogue, in: Chemistry of Portland cement, 2nd ed., Reinhold Publishing Corp, New York (NY), 1955, p. 790.
  • 37. R. Chaid, R. Jauberthie, J. Zeghiche, F. Kherchi, Impact de la poudre de marbre conjuguée au calcaire du CEM II sur la durabilité du béton, Eur. J. Environ. Civ. Eng. 15 (2011) 427-45.
  • 38. K. Arroudj, A. Zenati, M.N. Oudjit, A. Bali, A. Tagnit-Hamou, Reactivity of fine quartz in presence of silica fume and slag, Engineering. 3 (2011) 569-76.
  • 39. J. Goupy, Les plans d’experiences [Design of experiments]. France: Revue MODULAD, Numero 34. 2006.
  • 40. ACI 211.1-91, Standard practice for selecting proportions for normal, heavyweight, and mass concrete. American Concrete Institute, Farmington Hills, Michigan, 1991.
  • 41. G. Dreux, Concretes composition, Techniques de l’Ingenieur 2 (1982) 220.
  • 42. NF P 18-451, Fresh concrete, cone slump tests, French standards, France, 1981.
  • 43. NF EN 12390-3, Essais pour béton durci - Partie 3: résistance à la compression des éprouvettes [Tests for hardened concrete - Part 3: compressive strength of the samples], France, 2012.
  • 44. B. Mezghiche, Laboratory Testing of Construction Materials, Publication Universitaire Biskra, Algerie, 2005, p. 120.
  • 45. NF P 18-459, Concrete - Testing hardened: testing porosity and density, French standards, France, 2010.
  • 46. A. Rana, P. Kalla, L.J. Csetenyi, Sustainable use of marble slurry in concrete, J. Clean. Prod. 94 (2015) 304-11.
  • 47. B. Toufik, B. Bensaid, A. Kheireddine, E. Karim, K. El-Hadj, Prediction of the durability performance of ternary cement containing limestone powder and ground granulated blast furnace slag, Constr. Build. Mater. 209 (2019) 215-21.
  • 48. B. Liu, G. Luo, Y. Xie, Effect of curing conditions on the permeability of concrete with high volume mineral admixtures, Constr. Build. Mater. 167 (2018) 359-71.
  • 49. R.K. Majhi, A.N. Nayak, Production of sustainable concrete utilising high-volume blast furnace slag and recycled aggregate with lime activator, J. Clean. Prod. 255 (2020) 120188.
  • 50. M.A. Rashwan, T.M. Al - Basiony, A.O. Mashaly, M.M. Khalil, Behaviour of fresh and hardened concrete incorporating marble and granite sludge as cement replacement, J. Build. Eng. 32 (2020), 101697.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-efa188c3-a9f3-45cc-8b89-df60ef8f40c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.