Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 27, No. 4 | 151--157
Tytuł artykułu

A Toy Model for the Diffusion-Limited Aggregation

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the deterministic Vicsek fractal with the aim to understand the multifractal properties of the Diffusion-Limited Aggregation.
Wydawca

Rocznik
Strony
151--157
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Cardinal Stefan Wyszynski University Faculty of Mathematics and Natural Sciences ul. Wóycickiego 1/3, PL-01-938 Warsaw, Poland , m.wolf@uksw.edu.pl
Bibliografia
  • [1] T.A. Witten, L.M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Physical Review Letters 47, 1400–1403 (1981).
  • [2] D.S. Grebenkov, D. Beliaev, How anisotropy beats fractality in two-dimensional on-lattice diffusion-limited-aggregation growth, Physical Review E 96, 042159 (2017).
  • [3] L.A. Turkevich, H. Scher, Occupancy-probability scaling in diffusion-limited aggregation, Physical Review Letters 55, 1026 (1985).
  • [4] C. Amitrano, P. Meakin, H.E. Stanley, Fractal dimension of the accessible perimeter of diffusion-limited aggregation, Physical Review A 40, 1713 (1989).
  • [5] C. Amitrano, A. Coniglio, F. di Liberto, Growth probability distribution in kinetic aggregation processes, Physical Review Letters 57, 1016 (1986).
  • [6] G. Paladin, A. Vulpiani, Anomalous scaling laws in multifractal objects, Physics Reports 156(4), 147–225 (1987).
  • [7] S. Schwarzer, J. Lee, A. Bunde, S. Havlin, H.E. Roman, H.E. Stanley, Minimum growth probability of diffusion-limited aggregates, Physical Review Letters 65, 603 (1990).
  • [8] M. Wolf, Hitting probabilities of diffusion-limited-aggregation clusters, Physical Review A, 43, 5504–5517 (1991).
  • [9] M. Wolf, Size dependence of the minimum-growth probabilities of typical diffusion-limited-aggregation clusters, Physical Review E 47, 1448–1451 (1993).
  • [10] T. Vicsek, Fractal models for diffusion controlled aggregation, J Phys. A: Math. and Gen. 16(17), L647 (1983).
  • [11] R.G. Hohlfeld, N. Cohen, Self-similarity and the geometric requirements for frequency independence in antennae, Fractals 7, 79–84 (1999).
  • [12] S. Fuqi, G. Hongming, G. Baoxin, Analysis of a Vicsek fractal patch antenna, ICMMT 4th International Conference on Proceedings Microwave and Millimeter Wave Technology (2004).
  • [13] P. Meakin, R.C. Ball, P. Ramanlal, L.M. Sander, Structure of large two-dimensional square-lattice diffusion-limited aggregates: Approach to asymptotic behavior, Physical Review A 35(12), 5233 (1987).
  • [14] F. Spitzer, Principles of Random Walk, Graduate Texts in Mathematics, Springer, 2nd ed. (2001).
  • [15] A.P. Roberts, M.A. Knackstedt, Comment on “Hitting probabilities of diffusion-limited-aggregation clusters”, Physical Review E 48, 4143–4144 (1993).
  • [16] L. Niemeyer, L. Pietronero, H.J. Wiesmann, Fractal dimension of dielectric breakdown, Physical Review Letters 52, 1033–1036 (1984).
  • [17] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Texts in Applied Mathematics, Springer New York, 2nd ed. (1993).
  • [18] A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis, Texts in Applied Mathematics, Dover Publications, 2nd ed. (2001).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ef7f61af-7f74-4613-b066-4f657f4063e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.