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AbstrAct

The assessment of ship manoeuvring properties is a crucial part of the process of ship design and is usually first carried 
out during the model test phase of the project. According to the International Maritime Organisation (IMO), the 
manoeuvrability of the ship can be assessed on the basis of the standard trial manoeuvres. In order to do this, free 
running model tests or captive model tests are used, in conjunction with a mathematical model of ship motion; this is 
considered to be a reliable prediction method. In recent years, numerical-based methods have also been widely used 
in ship hydrodynamics and constantly improving computing power and more accurate fluid dynamics models have 
made the simulation of more complex cases possible. The study presented in this paper focuses on the determination of 
propeller-rudder-hull interaction coefficients based on the Mathematical Modelling Group (MMG) standard method 
in ship manoeuvring prediction. The identification of the parameters uses both captive model tests and a simplified 
numerical method, as well as regression formulas. The results of 35° turning and 10°/10° zig-zag manoeuvres, obtained 
with the use of each prediction method, are then compared. The test case used in the study is the container type cargo 
ship equipped with a single propeller and rudder. The model scale, for which the referenced model tests were carried out, 
is equal to 1:25 and a NACA 0020 rudder profile was used. This research highlights the advantages and disadvantages 
of each presented prediction method and their potential for future improvement.

Keywords: Ship manoeuvring model tests, Numerical manoeuvring tests, Ship manoeuvring prediction, MMG standard method, IMO 
standards for manoeuvring.

IntRoDuCtIon

The manoeuvring performance of a ship is one of the most 
crucial parameters when it comes to navigation safety. During 
the initial stages of ship design, the manoeuvrability of the ship 
is usually evaluated with the use of model tests. The prediction 
methods include empirical estimation, free running model 
tests and either captive model tests or virtual captive model 
tests, in conjunction with mathematical modelling of a ship’s 
motion. A growing number of prediction methods require 
validation and, as a result, the international conference on 
ship manoeuvrability was organised in 2008 (SIMMAN 2008) 
[1]. The study included experimental benchmark data gathered 
from planar motion mechanism tests (PMM), circular motion 

tests (CMT), numerical simulations, and free running model 
tests. The researchers used different approaches to carry 
out the numerical simulations, which provided important 
reference data for manoeuvring simulations. 

As of today, there are two mathematical models that are 
most often used. The first one was presented by Abkowitz [2] 
and considers the propeller, rudder and hull as a whole in 
motion equations. The second model was introduced by the 
MMG [3] and calculates the propeller, rudder and hull forces 
separately, with the inclusion of their mutual interactions. In 
both cases, the prediction accuracy depends on the accuracy of 
estimated hydrodynamic coefficients. The rapid development 
of software using Reynolds-Averaged Navier-Stokes Equations 
(RANSE) has resulted in a wider application of Computational 

https://orcid.org/0000-0003-3160-0060


POLISH MARITIME RESEARCH, No 3/202416

Fluid Dynamics (CFD) in manoeuvring prediction [4,5]. New 
methods based on artificial intelligence are also presented 
[6,7]. The studies aim to not only improve the prognosis 
accuracy but also reduce the number of necessary tests, in 
the search for a compromise between quality and efficiency.

The purpose of this research is to compare the manoeuvring 
predictions of cargo ships with propeller-rudder-hull 
interaction coefficients, based on the MMG method and 
obtained with captive model tests, virtual captive model tests 
and regression formulas. The presented virtual captive model 
tests include suggestions for a simplified testing procedure. 
Finally, the advantages and disadvantages of each estimation 
method are discussed. 

MAtHEMAtICAL MoDEL 
oF SHIP MotIon

MotIon EQuAtIonS

The MMG model used in this study uses two corresponding 
coordinate systems. The forces acting on the ship are 
calculated with reference to a ship-fixed coordinate system 
located at the midship position (0,0,0), as presented in Fig. 1, 
with a centre of gravity of ship G located at (xG,0,0). 

Fig. 1. Coordinate system

As a result, the following equations are obtained:
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where m is the mass of the ship, 𝑣𝑣𝑚𝑚 denotes the ship’s lateral speed (midship), u is the 
longitudinal ship speed, r is the yaw rate, xG is the longitudinal coordinate of the centre of 
gravity of the ship (calculated from midship), and IzG is the moment of inertia of the ship 
around the centre of gravity. The mx, my and Jz symbols stand for the added masses and added 
moment of inertia. The Fx, Fy and Nz symbols represent, in order, the surge and sway forces as 
well as the yaw moment acting on the ship, which are a sum of the following components: 
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surge and sway forces as well as the yaw moment acting on 
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The subscripts H, R and P denote the forces and moments 
due to the hull, rudder and propeller, respectively. The ship-
fixed coordinate system is later transformed back into an 
earth-fixed system for the assessment of ship manoeuvrability. 

HuLL FoRCES

The forces acting on a hull during manoeuvring can be 
expressed, for practical purposes, in a non-dimensional form, 
as follows [1]:
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where ρ is the water density, LPP is the length between perpendiculars, d stands for the ship 
draught and U is the ship velocity. The non-dimensional hull forces can now be expressed as 
polynomial functions using the drift angle β and r’ = rLpp/U: 

X’H = R0′ + X′βββ2 + X′βrβr′ + X′rrr′2 + X′βββββ4 

 Y’H = Y′ββ + Y′rr′ + Y′ββββ3 + Y′rrrr′3 + (Y′ββrβ + Y′βrrr′)βr′ 

N’H = N′ββ + N′rr′ + N′ββββ3 + N′rrrr′3 + (N′ββrβ + N′βrrr′)βr′ 

(11) 

(12) 

(13) 

The polynomial coefficients in Eqs. 11, 12 and 13 are called ‘hydrodynamic 
derivatives on manoeuvring’. There are various methods for assessing their value, including 
captive model tests and numerical simulations. It has to be pointed out that the presented 
polynomial coefficients include added masses. 
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The inflow of water to the propeller changes considerably during manoeuvring because of the 
ship’s drift angle. This phenomenon is difficult to capture and many algorithms have been 
proposed [3]. In this paper, the wake fraction coefficient of the propeller is calculated using 
the following formula, for simplicity [8]: 
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various methods for assessing their value, including captive 
model tests and numerical simulations. It has to be pointed 
out that the presented polynomial coefficients include added 
masses.
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PRoPELLER FoRCES

The surge force generated by a  working propeller is 
expressed as:

The subscripts H, R and P denote the forces and moments due to the hull, rudder and propeller, 
respectively. The ship-fixed coordinate system is later transformed back into an earth-fixed 
system for the assessment of ship manoeuvrability.  
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(10) 
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where tP is the thrust deduction factor, ρ is the density of water, 
nP represents the propeller revolutions and DP is the propeller 
diameter. The propeller thrust open water efficiency KT is 
a function of the propeller advance ratio coefficient JP, which 
can be calculated as a fourth order polynomial function:
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The inflow of water to the propeller changes considerably 
during manoeuvring because of the ship’s drift angle. This 
phenomenon is difficult to capture and many algorithms have 
been proposed [3]. In this paper, the wake fraction coefficient 
of the propeller is calculated using the following formula, 
for simplicity [8]:
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RuDDER FoRCES

The hydrodynamic forces induced by the rudder during 
manoeuvring can be calculated based on the rudder’s normal 
force, according to the following equations:

 

RUDDER FORCES 

The hydrodynamic forces induced by the rudder during manoeuvring can be calculated 
based on the rudder’s normal force, according to the following equations: 

XR = -(1 - tR)FNsinδ 

YR = -(1 + aH)FNcosδ 

NR = -(xR + aHxH)FNcosδ 

(19) 

(20) 

(21) 

where tR is the steering resistance deduction factor, aH is the rudder force increase factor, xH is 
the longitudinal coordinate of the acting point of the additional lateral force and xR is the 
longitudinal coordinate of the rudder position (usually, xR = -0.5Lpp). The additional lateral 
force may be better understood when considering the ship and rudder relationship as the 
hydrodynamic interaction of a wing with a flap. The forces acting on the rudder are presented 
in Fig. 2. 

 
Fig. 2. Forces acting on the rudder  

The rudder’s normal force is expressed as: 

FN = 0.5𝜌𝜌ARfa𝑈𝑈𝑅𝑅2 sin𝛼𝛼R (22) 

Here, AR is the profile area of the moveable part of the rudder and fa stands for the normal 
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correction factor. By expressing propeller thrust 𝑇𝑇 as the pressure difference between the aft 
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The κ value in Eq. (32) is an experimental constant, which can be written as [3,9]:  

        κ =  𝑘𝑘𝑥𝑥ε  ≈  0.55
ε    
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The ε value in Eq. (32) represents the ratio of wake fraction coefficients in the rudder and 
propeller position and is established experimentally. It has to be pointed out that, by using the 
classical MMG method, ε is also influenced by the rudder profile effect when using classical 
equations for normal force coefficient fa. 
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The uRP can now be expressed by introducing the rudder 
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The κ value in Eq. (32) is an experimental constant, which can be written as [3,9]:  
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ε    
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The ε value in Eq. (32) represents the ratio of wake fraction coefficients in the rudder and 
propeller position and is established experimentally. It has to be pointed out that, by using the 
classical MMG method, ε is also influenced by the rudder profile effect when using classical 
equations for normal force coefficient fa. 
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equations for normal force coefficient fa. 

         𝜀𝜀 = (1−𝑤𝑤𝑅𝑅)
(1−𝑤𝑤𝑅𝑅) 

 
(34) 

(33)

The ε value in Eq. (32) represents the ratio of wake fraction 
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normal force coefficient fa.

The components of the water inflow to the rudder velocity are calculated based on the results 
of experiments. The lateral velocity to the rudder is equal to: 

     𝑣𝑣R = UγR±(β – r′l′R) (26) 

The γR± value in Eq. (26) is the flow straightening coefficient and l′R is the effective 
longitudinal coordinate of the rudder position. The ′ symbol stands for non-dimensional 
values. The longitudinal component of rudder inflow velocity uR consists of the sum of 
velocities where the propeller slip stream hits uRP and where it does not, uR0. Additionally, it 
is assumed that: 

     η = 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅
 ≅  𝐷𝐷𝑅𝑅𝐻𝐻𝑅𝑅  (27) 

where 𝐴𝐴𝑅𝑅𝑅𝑅 is the rudder area when the slip stream hits and AR is the total projected lateral 
rudder area. The inflow velocity uR is equal to: 

                uR = √𝜂𝜂𝑢𝑢𝑅𝑅𝑅𝑅2 + (1 − 𝜂𝜂)𝑢𝑢𝑅𝑅02  (28) 

The 𝑢𝑢𝑅𝑅𝑅𝑅 can now be expressed by introducing the rudder wake fraction coefficient, which 
represents water velocity at the rudder position without a working propeller: 

                uRP = (1 −  𝑤𝑤𝑅𝑅)𝑢𝑢 +  𝑘𝑘𝑥𝑥𝛥𝛥𝑢𝑢 (29) 

The 𝑘𝑘𝑥𝑥𝛥𝛥𝑢𝑢 value in Eq. (29) is a theoretical velocity increase due to a propeller with a 
correction factor. By expressing propeller thrust 𝑇𝑇 as the pressure difference between the aft 
and fore of the propeller disc (Eq. (30)) and combining it with Bernoulli’s theorem in Eq. 
(31): 

                    ρ𝑛𝑛𝑅𝑅2𝐷𝐷𝑅𝑅4KT = 𝛥𝛥𝛥𝛥 1
4 𝜋𝜋𝐷𝐷𝑅𝑅

2  (30) 

                   𝛥𝛥𝛥𝛥 +  𝜌𝜌2 𝑢𝑢𝑅𝑅
2 =  𝜌𝜌2 𝑢𝑢𝑅𝑅

2  (31) 

The following equation for the longitudinal component of rudder inflow velocity uR is 
obtained: 

    uR = (1 −  𝑤𝑤𝑅𝑅)𝑢𝑢ε√η {1 +  κ(√1 +  8𝐾𝐾𝑇𝑇𝜋𝜋𝜋𝜋𝑅𝑅2
− 1)}

2
+ (1 −  η) 

 

(32) 

The κ value in Eq. (32) is an experimental constant, which can be written as [3,9]:  

        κ =  𝑘𝑘𝑥𝑥ε  ≈  0.55
ε    

 
(33) 

The ε value in Eq. (32) represents the ratio of wake fraction coefficients in the rudder and 
propeller position and is established experimentally. It has to be pointed out that, by using the 
classical MMG method, ε is also influenced by the rudder profile effect when using classical 
equations for normal force coefficient fa. 

         𝜀𝜀 = (1−𝑤𝑤𝑅𝑅)
(1−𝑤𝑤𝑅𝑅) 

 
(34) 

(34)

InVEStIGAtED CASE

The test case used in this study was the container type 
cargo ship designed by the Nelton Sp. z o.o. company. The 
ship is equipped with a single left-handed propeller. The 
model scale, at which the model tests were carried out, was 
equal to 1:25 and the NACA 0020 rudder profile was used 
during the tests. The numerical captive model tests presented 
were also undertaken at model scale, in order to simplify the 
computing domain. The model metacentric height (GM) was 
large enough that the roll coupling effect on manoeuvring was 
considered to be negligible. The hull model and stock propeller 
were manufactured in accordance with the requirements 
given in the following ITTC Recommended Procedures 
[10,11]. Table 1 presents the basic model parameters and the 
ship model is presented in Fig. 3. 
Tab. 1. Parameters of tested ship

Symbol Unit Real 
scale

Model 
scale

Scale λ [-] 1:1 1:25

Length between 
perpendiculars Lpp [m] 155.4 6.22

Breadth at waterline B [m] 26.6 1.06

Draught d [m] 8.1 0.32

Block coefficient CB [-] 0.64

Longitudinal coordinate of the 
centre of gravity from midship xG [m] -1.5 -0.06

Radius of the gyration of the 
ship around the centre of 
gravity (related to Lpp)

k'yy [-] 0.25

Propeller diameter DP [m] 5.8 0.23

Propeller direction of rotation - - counter-clockwise

Rudder projected lateral 
moveable area AR [m2] 25 0.04

Rudder height hR [m] 5.8 0.23

Rudder turn rate - [°/s] 11.6 2.32

Fig. 3. Container type cargo ship tested
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CAPtIVE MoDEL tEStS

The captive model tests were conducted at the Maritime 
Advanced Research Centre  (CTO S.A.) with the use of PMM. 
The model speed U0 was set at 1.646 m/s (equivalent to 16.0 kn 
at full scale). After that, the following tests were conducted:
•	 Rudder force test in the straight, moving under different 

rudder angles (propeller revolutions nP = 9.3 rps).
•	 Rudder force test in the straight, moving under various 

propeller loads (propeller revolutions nP = 7.8, 8.5, 8.7, 
and 9.3 rps).

•	 Rudder force test in oblique towing (propeller revolutions 
nP = 9.3 rps).
During the tests, both the hull surge and rudder surge were 

measured, as well as the lateral forces, the yaw moment around 
the midship, and the propeller thrust. The tests were carried 
out in the free condition for trim and signage of the model. 
The test apparatus consisted of a propulsion dynamometer, 
rudder dynamometer and hull dynamometer. The yaw 
moment was captured by the measurement of two lateral 
hull forces. The methods used to carry out the testing followed 
the methodology given in the IMO documents [12,13] and 
the ITTC Recommended Procedure for captive model tests 
[14]. Measurement uncertainty in the presented method is 
discussed in the related ITTC procedure [15]. The measuring 
accuracy of each dynamometer component is presented in 
Table 2 and the results of the tests are presented in Fig. 7. 
Tab. 2. Measurement accuracy of dynamometers

Measurement uncertainty for 0.95 confidence level

Propeller 
thrust 

Rudder X 
force

Rudder Y 
force

Hull X 
force 

Hull fore Y 
force

Hull aft Y 
force

± 0.11N ± 0.34N ± 0.37N ± 0.25N ± 1.31N ± 1.34N

Fig. 4. Captive model tests with the use of PMM

VIRtuAL CAPtIVE MoDEL tEStS

The CFD simulations were conducted at a model scale using 
the RANSE method. The mesh creation and the calculations 
were conducted using Simens Simcentre (STAR-CCM+). The 
solving methods used in the computation followed ITTC 
guidelines [16] and are listed below:

•	 Rigid Body Motion: governs the movement of the propeller 
and moves the vertices of the rigid grid according to 
a prescribed formula. 

•	 Volume Of Fluid: an interface-capturing method that 
predicts the distribution and the movement of the interface 
of immiscible phases. The High Resolution Interface 
Capturing scheme was used.

•	 k-omega SST turbulence: a two-equation model that solves 
transport equations for the turbulent kinetic energy and 
the specific dissipation rate in order to determine the 
turbulent flow conditions. The SST turbulence model 
combines the advantages of k-omega and k-epsilon models 
using a blending function that allows good accuracy in the 
boundary layer region (k-omega) and better performance 
in free stream regions (k-epsilon). This turbulence model 
was successfully implemented in the determination of 
propeller-hull interaction coefficients in other studies 
[17,18]. 

•	 The ‘All y+’ wall treatment was used for modelling near-
wall turbulence quantities.

•	 The solution was assumed to reach convergence when the 
fluctuation of the forces monitored on the hull and the 
rudder were stable for at least 15 seconds of simulated time. 
The use of the above-mentioned model allowed better 

capture of the turbulent flow near the propeller and the rudder 
and, at the same time, the general flow around the hull was 
simulated with good accuracy. The computational mesh was 
divided into two distinct parts, similar to other studies on 
propellers [19]: the rotating cylinder with the propeller inside 
and a stationary region containing the ship, the rudder and 
the rest of the volume around it. The time step used in the 
calculations was set to 0.001 s at the final phase of calculations. 
0.05 s was used in the initial time period and this was small 
enough so that its impact was insignificant. The propeller 
was meshed with polyhedral cells and the stationary domain 
was meshed using hexahedral cells; the number of elements 
was 450.000 and 2 million, respectively. The domain size was 
40 × 26 × 12 m with the model’s midship located at its centre. 
The 3D meshes and computational domain are presented in 
Fig. 5 and Fig. 6. 

 
Fig. 5. Virtual captive model tests – 3D mesh 
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Fig. 6. Virtual captive model tests – computational domain

Prior to the simulations, a mesh sensitivity study was 
conducted in the case of a  rudder deflection of 0°. The 
computational meshes were generated in sequence, where 
every next mesh had the number of the cells doubled. 
Despite the cell count doubling, the values of the considered 
parameters changed very little between subsequent meshes, 
which proved good convergence (as presented in Fig. 7). The 
mesh used for the manoeuvring simulations is shown in red. 
The verification and validation of the numerical model was 
carried out according to the ITTC procedure [20].

Fig. 7. Mesh sensitivity study

RESuLtS oF CAPtIVE tEStS

The resulting forces and moments obtained by the 
numerical rudder force tests, at different rudder angles, 

generally showed good agreement with the model tests, having 
slightly higher values. What is more, it should be noted that, 
for higher rudder angles, the normal force FN drops in the case 
of model tests, which has no place during numerical tests. 
As this effect is not expected to take place for a drifting hull, 
those points were not taken into consideration in the analyses. 
The propeller thrust measured with both methods showed 
an increasing trend with rudder deflection, which is equal to 
about 15% in the case of maximum rudder angle. This leads 
to the conclusion that either the thrust deduction factor or 
the wake fraction coefficient may not have a constant value 
with rudder deflection, and this requires further study. The 
results of the rudder force tests at different rudder angles are 
presented in Fig. 8.

Fig. 8. Results of rudder force tests with different rudder angles

Rudder force tests in the straight, moving under various 
propeller loads, were carried out in order to estimate the 
water acceleration at the rudder position. The tests were 
performed with the use of model tests at four propeller loads 
and a non-deflected rudder. The interaction coefficient ε 
represents the ratio of wake fraction at the propeller disc to 
the wake fraction at the rudder position and was determined 
based on the measurement of the rudder’s normal force FN0 
(Fig. 10). In the case of the numerical version of the test, direct 
measurement of the water velocity near the propeller plane 
and rudder was carried out in order to reduce the number of 
necessary simulations, since 

RESULTS OF CAPTIVE TESTS 

The resulting forces and moments obtained by the numerical rudder force tests, at 
different rudder angles, generally showed good agreement with the model tests, having 
slightly higher values. What is more, it should be noted that, for higher rudder angles, the 
normal force FN drops in the case of model tests, which has no place during numerical tests. 
As this effect is not expected to take place for a drifting hull, those points were not taken into 
consideration in the analyses. The propeller thrust measured with both methods showed an 
increasing trend with rudder deflection, which is equal to about 15% in the case of maximum 
rudder angle. This leads to the conclusion that either the thrust deduction factor or the wake 
fraction coefficient may not have a constant value with rudder deflection, and this requires 
further study. The results of the rudder force tests at different rudder angles are presented in 
Fig. 8. 

 
Fig. 8. Results of rudder force tests with different rudder angles 

Rudder force tests in the straight, moving under various propeller loads, were carried 
out in order to estimate the water acceleration at the rudder position. The tests were performed 
with the use of model tests at four propeller loads and a non-deflected rudder. The interaction 
coefficient ɛ represents the ratio of wake fraction at the propeller disc to the wake fraction at 
the rudder position and was determined based on the measurement of the rudder’s normal 
force FN0 (Fig. 10). In the case of the numerical version of the test, direct measurement of the 
water velocity near the propeller plane and rudder was carried out in order to reduce the 
number of necessary simulations, since 𝜂𝜂 ≅ 1 for the tested ship (see Fig. 9). The ratio was 
calculated as the average value in the area equal to the propeller diameter. 

 
Fig. 9. Numerical determination of water velocity at propeller and rudder position 

 for the tested ship (see 
Fig. 9). The ratio was calculated as the average value in the 
area equal to the propeller diameter.

Fig. 9. Numerical determination of water velocity at propeller and rudder 
position
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Fig. 10. Rudder force test in the straight moving under various propeller loads

The rudder force test under oblique towing was carried out 
in order to determine the flow straightening coefficients γR±. 
The tests were conducted for various drift angles and a non-
deflected rudder. The coefficients for starboard and portside 
turning were calculated through the measurement of rudder 
normal forces – FN0. The results of the tests presented in Fig. 11 
show that the rudder normal force obtained with numerical 
methods is larger. 

Fig. 11. Rudder force test in oblique towing

The effective longitudinal position of the rudder was 
only calculated with numerical methods because the model 
tests could not have been performed because of measuring 
range limitations. The coefficient l'R is determined by the 
measurement of the rudder normal force FN0 of the non-
deflected rudder at different rates of turn. Since the relation 
between rudder lateral velocity and rate of turn in this 
test is linear, it was decided that turning to one side was 
sufficient, thus limiting the number of tests. The results of 
the simulations are presented in Fig. 12. 

Fig. 12. Estimation of effective longitudinal rudder position

PROPELLER-RUDDER-HULL 
INTERACTION COEFFICIENTS

The interaction coefficients represent the relation between 
each ship component: the rudder, hull and propeller. Yasukawa 
and Yoshimura [3] confirmed that the interaction between 
the rudder and hull forces can be approximated with the 
linear function for a given propeller load. The results of the 
model tests and the numerical simulations in rudder force 
tests are a good match, the results obtained with the variable 
load tests and direct measurements of water velocity near the 
propeller and rudder positions gave similar results, so they 
are in good agreement, from a simulation perspective. The 
forces measured during oblique towing differ significantly 
between the model tests and numerical simulations and are 
larger in the case of CFD tests. The comparison of the force 
measurements, using captive model tests and virtual captive 
model tests, is presented in Fig. 13.

Fig. 13. Determination of propeller-rudder-hull interaction coefficients 

The results of each propeller-rudder-hull interaction 
coefficient acquired with captive model tests and numerical 
methods are put together with the regression formulas for 
merchant vessels (suggested by Yoshimura and Masumoto [9]) 
and included in Table 3. It should be noted that the rudder-
hull interaction coefficients tR, aH, x'H, as well as the ratio 
of wake fractions ε, are similar for model and numerical 
tests, with the regression formula having a larger error. The 
flow straightening coefficients differ considerably for each 
estimation method in the cases of both the averaged and 
the portside and starboard values. The difference in values 
between portside and starboard is different for the model and 
numerical tests, the latter showing larger asymmetry. The 
effective longitudinal rudder position varies a little between 
the regression formula and CFD.
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Tab. 3. Parameters of tested ship

Model tests

tR aH x'H ε kx γ+
R γ–

R l'R

0.277 0.292 -0.412 1.140 0.55 0.52 0.60 -

Numerical tests

tR aH x'H ε kx γ+
R γ–

R l'R

0.334 0.293 -0.414 1.158 0.55 0.67 0.80 -0.82

Regression formula

tR aH xH ε kx γR l'R

0.390 0.392 -0.400 1.108 0.55 0.364 -0.90

SHIP MAnoEuVRInG PREDICtIon

In order to perform the manoeuvring prediction, using the 
mathematical model of ship motion presented by the MMG, 
the following parameters must be known:
•	 Ship model resistance (R0).
•	 Propeller open water characteristics.
•	 Effective wake and thrust deduction coefficients, obtained 

through propulsion tests (wP, tP).
•	 Added mass coefficients for surge and sway motions and 

yaw moment (mx, my, Jz). 
•	 Hydrodynamic hull derivatives (x', y', n'). 
•	 Propeller-rudder-hull interaction coefficients.

In this study, model resistance, self-propulsion and 
propeller open water tests were carried out in advance. The 
added mass coefficients were calculated using Hooft’s and 
Pieffers’ formulas [21] and hull hydrodynamic coefficients 
were obtained with the virtual CMT, according to the method 
presented by Kołodziej and Hoffmann [22]. The parameters 
used in the manoeuvring simulations are presented in Table 4.
Tab. 4. Parameters used in simulations.

R'0 -0.01490 n'b 0.06875

x'bb -0.005272 n'bbb -0.20230

x'bbbb 0.77760 n'bbr -0.13670

x’br -0.08195 n'rr -0.03422

x'rr -0.01078 n'r -0.02331

y'b 0.18040 n'rrr -0.01151

y'bbb 0.79600 wP 0.36700

y'bbr -0.05040 tP 0.25500

y'brr 0.21070 m'x 0.01870

y'r 0.05170 m'y 0.14430

y'rrr 0.01329 J'z 0.00480

The simulation of ship manoeuvrability was carried out 
for 35° turning manoeuvres, as well as 10°/10° zig-zag tests. 
The rudder steering rate and propeller revolutions were 
equal to 11.6 °/s and 9.3 rps. The simulations were run using 
@MATLAB Simulink software with the ODE 4 solver and 
a constant 0.01 s time step (i.e. small enough that the solver 
impact was marginal from a practical perspective). The 
results of the turning circles are presented in Fig. 14 and 

zig-zag manoeuvres are presented in Fig. 15. The IMO criteria 
parameters obtained for ship manoeuvrability are presented 
in Table 5. The results of simulated turning circles show 
considerable differences between each presented method of 
estimation. In general, the turning results based on coefficients 
obtained with numerical methods overestimates IMO criteria 
for turning compared to model tests. The regression method 
underestimates these criteria. 

Fig. 14. Comparison of simulated 35° turning manoeuvres

The results of simulated zig-zag manoeuvres are also 
considerably different for each estimation method. The 
prognosis made with the use of numerical tools underestimates 
overshot angles (OSA) and overestimates initial turning 
ability over time (t'A) when compared to the model tests. 
The simulated zig-zag manoeuvres, based on the coefficient 
obtained with regression formulas, have a contrary trend to 
the numerical tests.

Fig. 15. Comparison of simulated 10°/10° zig-zag manoeuvres

Tab. 5. IMO criteria parameters obtained

Model tests

Advance Tactical 
diameter 1st OSA 2nd OSA t’A

Starboard 2.97 2.94 8.4° 10.9° 1.52 

Portside 3.02 3.03 7.4° 12.8° 1.56

Numerical tests

Advance Tactical 
diameter 1st OSA 2nd OSA t’A

Starboad 3.05 3.09 6.5° 7.3° 1.58

Portside 3.14 3.26 5.3° 9.1° 1.65
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Regression

Advance Tactical 
diameter 1st OSA 2nd OSA t’A

Starboard 2.88 2.79 10.6° 16.9° 1.46

Portside 2.88 2.79 10.6° 16.9° 1.46

Numerical tests / Model tests 

Starboard  1.03     1.05     0.77     0.67     1.04    

Portside  1.04     1.08     0.72     0.71     1.06    

Regression / Model tests 

Starboard 0.97 0.95 1.26 1.55 0.96

Portside 0.95 0.92 1.43 1.32 0.94

CONCLUSIONS

This study presents a  numerical approach to the 
determination of the propeller-rudder-hull interaction 
coefficients using the MMG standard method. The calculations 
were validated by the measurements carried out with the use 
of classical captive model tests. Next, both methods, together 
with regression formulas, were implemented to estimate IMO 
standard manoeuvres and the results were compared. The 
presented CFD simulations used the K-ω SST turbulence 
model because of its universal quality. 

The study showed good correlation of the measured forces 
between model tests and virtual model tests in the rudder 
force test. Both methods captured thrust increase with rudder 
deflection, which leads to the conclusion that it influences 
propulsion coefficients. This phenomenon is not taken into 
consideration in the presented manoeuvring model and will 
be studied further. 

The results proved that the CFD tools can be successfully 
implemented in the determination of rudder-hull interaction 
coefficients. A simplified numerical method also provided 
satisfying results in the case of the wake fraction ratio 
and the effective longitudinal rudder position, but highly 
overestimated the flow-straightening coefficients responsible 
for the asymmetry between starboard and portside 
manoeuvres. This is believed to be the reason for the general 
overestimation of IMO criteria parameters in the case of 
turning manoeuvres and initial turning ability times, as 
well as the underestimation of overshoot angles in the case 
of zig-zag manoeuvres. The correct approach to estimating 
flow-straightening coefficients using CFD requires additional 
study.  

Direct measurement of water inflow velocity to the rudder 
was undertaken because the propeller slip stream speed uRP 
is the only component of rudder speed uR in the case of the 
investigated ship. Additional study is necessary for this type of 
measurement for smaller η ratios and different rudder types. 

The use of regression formulas in manoeuvring prognosis 
is the least time consuming but less accurate method, 
which benefits from the already gathered reference data 
and experience of the user. Despite that, this method 
might provide a good means for reducing the number of 
numerical simulations necessary for obtaining hydrodynamic 

coefficients of MMG models. For example, calculating flow-
straightening coefficients with such formulas would enable 
the use of an accelerating disk in place of a propeller model, 
thus simplifying the preparation phase of simulations and 
reducing the number of tests. This approach will be studied 
in the future.

Numerical methods show a  lot of potential in ship 
manoeuvring prediction because they do not require the 
production of a model or the usage of special measuring 
devices, which makes them more flexible than traditional 
model tests. As mentioned, the practical engineering aspect 
requires the prognosis method to not only be accurate but 
also effective. In order to meet this demand, future studies 
will focus on not just improving mathematical and numerical 
models but also on combining the presented prediction 
methods. 
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