Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 20, nr 2 | 119--128
Tytuł artykułu

Growth and Lδ-approximation of solutions of the Helmholtz equation in a finite disk

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we study the growth and Lδ-approximation, 1 ≤ δ ≤ ∞, of solutions (not necessarily entire) of Helmholtz-type equations. Moreover, we obtain the characterization of order and type of H ∈ HR, 0 < R < ∞, in terms of decay of approximation errors En(H,R0) and Ein,δ(H,R0), i = 1,2. Our results extend and improve the results obtained by McCoy [J. Approx. Theory 25 (1979), 153–168].
Wydawca

Rocznik
Strony
119--128
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Sciences, Al-Baha University, P.O. Box 1988, Alaqiq, Al-Baha-65431, Saudi Arabia, K.S.A., d_kumar001@rediffmail.com
autor
  • Department of Mathematics, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, P.O. Hatgobindapur, Burdwan, West Bengal, India, anin_iitkgp@yahoo.com
Bibliografia
  • [1] S. K. Bajpai, J. Tanne and D. Whittier, A decomposition theorem for an analytic function, J. Math. Anal. Appl. 48 (1974), 736-742.
  • [2] S. Bergman, Classes of solutions of linear partial differential equations in three variables, Duke Math. J. 13 (1946), 419-458.
  • [3] S. Bergman, Integral Operators in the Theory of Linear Partial Differential Equations, 2nd rev. printing, Ergeb. Math. Grenzgeb. 23, Springer-Verlag, Berlin, 1969.
  • [4] F. Beuermann, Wachstumsordnung, Koeffizientenwachstum und Nullstellendichte bei Potenzreihen mit endlichem Konvergenzkreis, Math. Z. 33 (1931), 98-108.
  • [5] A. J. Fryant, Ultraspherical expansions and pseudo analytic functions, Pacific J. Math. 94 (1981), no. 1, 83-104.
  • [6] G. P. Kapoor, A study in the growth properties and coefficients of analytic functions, Ph.D. thesis, Indian Institute of Technology, Kanpur, 1972.
  • [7] H. H. Khan and R.Ali, On the best polynomial approximation of generalized biaxisymmetric potentials in Lp-norm, p ≥ 1, Transylv. J. Math. Mech. 3 (2011), no. 2, 103-110.
  • [8] D. Kumar, Ultraspherical expansions of generalized biaxially symmetric potentials and pseudo analytic functions, Complex Var. Elliptic Equ. 53 (2008), no. 1, 53-64.
  • [9] D. Kumar, Growth and Chebyshev approximation of entire function solutions of Helmholtz equation in R2, Eur. J. Pure Appl. Math. 3 (2010), no. 6, 1062-1069.
  • [10] D. Kumar, On the (p, q)-growth of entire function solutions of Helmholtz equation, J. Nonlinear Sci. Appl. 4(2011), no. 1, 5-14.
  • [11] D. Kumar, Approximation of entire function solutions of the Helmholtz equation having slow growth, J. Appl. Anal. 18 (2012), 179-196.
  • [12] G. R. MacLane, Asymptotic Values of Holomorphic Functions, Rice Univ. Stud. 49, no. 1, Rice University, Houston, 1963.
  • [13] P.A. McCoy, Polynomial approximation and growth of generalized biaxisymmetric potentials, J. Approx. Theory 25 (1979), 153-168.
  • [14] P. A. McCoy, Best Lp-approximation of generalized biaxisymmetric potentials, Proc. Amer. Math. Soc. 79 (1980), 435-440.
  • [15] P. A. McCoy, Approximation of pseudoanalytic functions on the unit disk, Complex Var. Theory Appl. 6 (1986), 123-133.
  • [16] P.A. McCoy, Optimal approximation and growth of solutions to a class of elliptic partial differential equations, J. Math. Anal. Appl. 154 (1991), 203-211.
  • [17] P. A. McCoy, Solutions of the Helmholtz equation having rapid growth, Complex Var. Elliptic Equ. 18 (1992), 91-101.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ef628f32-10a9-4617-9ad5-cdf2bd701beb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.