Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 15, no. 4 | 798--805
Tytuł artykułu

Modeling of cutter displacements during ball end milling of inclined surfaces

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work concentrates on the modeling of cutter's displacements during ball end milling with various surface inclinations. The cutter's displacements (vibrations) model including: tool's geometry, cutting conditions, surface inclination angle, run out and tool's deflections (induced by the cutting forces) was proposed. Subsequently, this model was validated empirically during the milling tests with various feed per tooth (fz), depth of cut (ap) and surface inclination angle (α) values. Experiments were carried out with the application of laser displacement sensor and force dynamometer. The research revealed that cutter's displacements are strongly affected by the cutter's run out and surface inclination. This observation is also confirmed by the developed model.
Słowa kluczowe
Wydawca

Rocznik
Strony
798--805
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
  • Poznan University of Technology, Piotrowo 3, Poznan 60-965, Poland
  • Poznan University of Technology, Piotrowo 3, Poznan 60-965, Poland
  • Opole University of Technology, Proszkowska 76, Opole 45-758, Poland
Bibliografia
  • [1] L.N. López de Lacalle, A. Lamikiz, J.A. Sanchez, M.A. Salgado, Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling, International Journal of Machine Tools & Manufacture 47 (2007) 388–400.
  • [2] G.M. Kim, B.H. Kim, C.N. Chu, Estimation of cutter deflection and form error in ball-end milling processes, International Journal of Machine Tools and Manufacture 43 (9) (2003) 917–924.
  • [3] G.M. Krolczyk, S. Legutko, Experimental analysis by measurement of surface roughness variations in turning process of duplex stainless steel, Metrology and Measurement Systems 21 (4) (2014) 759–770.
  • [4] G.M. Krolczyk, P. Niesłony, S. Legutko, Determination of tool life and research wear during duplex stainless steel turning, Archives of Civil and Mechanical Engineering 15 (2) (2015) 347–354.
  • [5] P. Preś, W. Skoczyński, K. Jaśkiewicz, Research and modeling workpiece edge formation process during orthogonal cutting, Archives of Civil and Mechanical Engineering 14 (2014) 622–635.
  • [6] D. Przestacki, M. Jankowiak, Surface roughness analysis after laser assisted machining of hard to cut materials, Journal of Physics: Conference Series 483 (1) (2014).
  • [7] Y. Altintas, E. Budak, Analytical prediction of stability lobes in milling, CIRP Annals-Manufacturing Technology 44 (1) (1995) 357–362.
  • [8] E. Budak, Analytical models for high performance milling. Part I: Cutting forces, structural deformations and tolerance integrity, International Journal of Machine Tools & Manufacture 46 (2006) 1478–1488.
  • [9] L.N. López de Lacalle, A. Lamikiz, J.A. Sanchez, M.A. Salgado, Effects of tool deflection in the high-speed milling of inclined surface, International Journal of Advanced Manufacturing Technology 24 (2004) 621–631.
  • [10] T. Insperger, J. Gradisek, M. Kalveram, G. Stepan, K. Winert, E. Govekar, Machine tool chatter and surface location error in milling processes, Journal of Manufacturing Science and Engineering 128 (10) (2006) 913–920.
  • [11] P. Twardowski, S. Wojciechowski, M. Wieczorowski, T.G. Mathia, Selected aspects of high speed milling process dynamics affecting machined surface roughness of hardened steel, Scanning 33 (2011) 386–395.
  • [12] G. Peigne, H. Paris, D. Brissaud, A. Gouskov, Impact of the cutting dynamics of small radial immersion milling operations on machined surface roughness, International Journal of Machine Tools & Manufacture 44 (2004) 1133–1142.
  • [13] S. Seguy, G. Dessein, L. Arnaud, Surface roughness variation of thin wall milling, related to modal interactions, International Journal of Machine Tools & Manufacture 48 (2008) 261–274.
  • [14] M.H. Sadeghi, R. Salami, B.M. Imani, Dynamic force model for 3-axis ball-end milling of sculptured surfaces, in: Proceedings of Tehran International Congress on Manufacturing Engineering (TICME2005), December 12–15, Tehran, Iran, 2005.
  • [15] Y. Altintas, P. Lee, A general mechanics and dynamics model for helical end mills, CIRP Annals-Manufacturing Technology 45 (1) (1996) 59–64.
  • [16] Y. Sun, Q. Guo, Analytical modeling and simulation of the envelope surface in five-axis flank milling with cutter runout, Journal of Manufacturing Science and Engineering 134 (2012) 1–11.
  • [17] S. Wojciechowski, Machined surface roughness including cutter displacements in milling of hardened steel, Metrology and Measurement Systems 18 (3) (2011) 429–440.
  • [18] S. Wojciechowski, P. Twardowski, M. Pelic, Surface texture generation during cylindrical milling in the aspect of cutting force variations, Journal of Physics: Conference Series 483 (1) (2014).
  • [19] S. Wojciechowski, P. Twardowski, M. Wieczorowski, Surface texture analysis after ball end milling with various surface inclination of hardened steel, Metrology & Measurement Systems 21 (1) (2014) 145–156.
  • [20] S. Wojciechowski, The estimation of cutting forces and specific force coefficients during finishing ball end milling of inclined surfaces, International Journal of Machine Tools & Manufacture 89 (2015) 110–123.
  • [21] S. Wojciechowski, P. Twardowski, M. Pelic, Cutting forces and vibrations during ball end milling of inclined surfaces, Procedia CIRP 14 (2014) 113–118.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ef3cc359-8000-409f-a808-e198c679dcdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.