Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 3 | 25--33
Tytuł artykułu

Numerical investigation of the effects of aspect ratio on the hydrodynamic performance of a semi-planing catamaran

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A semi-planing catamaran is a type of marine craft that benefits from high speed, in conjunction with the its inherent characteristics such as a large deck and high transverse stability. The aspect ratio, length over the beam of a demi-hull, significantly affects the hydrodynamic performance of this vessel. In this study, the effects of the aspect ratio on the hydrodynamic performance of a semi-planing catamaran in calm water and waves are investigated using numerical simulations. The numerical simulation of the AUT-SEM00 model itself is validated by its model test results. The results show that increasing the aspect ratio significantly increases the wetted surface, and that the increase in resistance in calm water is negligible. In addition, increasing the aspect ratio radically reduces the amplitude of vertical acceleration in waves at the center of gravity by up to 85%. Consequently, the seakeeping performance is considerably improved, and the risk to crew and equipment is reduced.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
25--33
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Amirkabir University of Technology, Department of Maritime Engineering, Tehran, Islamic Republic of Iran
  • Amirkabir University of Technology, Tehran, Islamic Republic of Iran, hamidz@aut.ac.ir
Bibliografia
  • 1. Millward A.The effect of hull separation and restricted water depth on catamaran resistance. Trans. R. Inst. Nav. Archit. 134, 341-349, 1992.
  • 2. Zaraphonitis G, Spanos D, Papanikolaou A. Numerical and experimental study on the wave resistance of fast displacement asymmetric catamarans. Proc. 2nd Int. Euro Conference HIPER, vol. 1, 2001.
  • 3. Moraes H B, Vasconcellos J M, Latite RG. Wave resistance for high-speed catamarans. Ocean Eng. 31(17-18), 2253-2282, 2004. doi:10.1016/j.oceaneng 2004.03.012.
  • 4. Lee S H, Lee Y G, Kin S H. On the development of a small catamaran boat. Ocean Eng. 34(14-15), 2061-2073, 2007. doi:10.1016/j.oceaneng.
  • 5. Zaghi S, Broglia R, Di Mascio A. Experimental and numerical investigations on fast catamarans interference effects. J. Hydrodyn. 22(5), 545-549, 2010. doi:10.1016/S1001-6058(09)60250-X.
  • 6. Zaghi S, Broglia R, Di Mascio A. Analysis of the interference effects for high-speed catamarans by model tests and numerical simulations. Ocean Eng. 38(17-18), 2110-2122, 2011. doi:10.1016/j.oceaneng 2011.09.037.
  • 7. Farkas A, Degiuli N, Martić I. Numerical investigation into the interaction of resistance components for a series 60 catamaran. Ocean Eng. 146(August), 151-169, 2017. doi:10.1016/j.oceaneng 2017.09.043.
  • 8. Lin C T, Lin T, Lin C W, Hsieh Y W, Lu L, Hsin C Y. Investigation of the seakeeping performance of twin hull vessels by different computational methods. 10th International Workshop on Ship and Marine Hydrodynamics Keelung. Taiwan, November 5th-8th, 2017.
  • 9. Fitriadhy A, Adam N, Amalina N, Azmi S.A. Seakeeping prediction of deep-V high-speed catamaran using computational fluid dynamics approach. SINERGI 22(3), 139-148, 2018. doi:10.22441/sinergi.2018.3.001.
  • 10. Chen X, Zhu R., Chuan Song Y, Lan, Fan J. An investigation on HOBEM in evaluating ship wave of high-speed catamaran ship. J. Hydrodyn. 31(3), 531-541, 2019. doi:10.1007/s42241-018-0092-8.
  • 11. Honaryar A, Ghiasi M, Liu P, Honaryar A. A new phenomenon in interference effect on catamaran dynamic response. International Journal of Mechanical Sciences 190, 106041, 2021. doi:10.1016/j.ijmecsci.2020.106041.
  • 12. Dogrul A, Kahramanoglu E, Cakıcı F. Numerical prediction of interference factor in motions and added resistance for Delft catamaran 372. Ocean Engineering 223, 108687, 2021. doi:10.1016/j.oceaneng.2021.108687.
  • 13. Farkas A, Degiuli N, Tomljenović I, Martić I. Numerical investigation of interference effects for the Delft 372 catamaran. In: Sustainable development and innovations in marine technologies (pp. 67-74). CRC Press. 2022. doi:10.1177/14750902231197886.
  • 14. Windyandari A, Sugeng S, Sulaiman, Ridwan M, Kurniawan Yusim A. Seakeeping behavior of hexagonal catamaran hull form as an alternative geometry design of flat-side hull vessel. Journal of Applied Engineering Science 21(4), 1016-1030, 2023. doi:10.5937/jaes0-41412.
  • 15. Moghaddas A, Zeraatgar H. Investigation of the static trim angle effects on the hydrodynamic performances of a semi-planing catamaran in calm water and waves. Scientia Iranica (under publication).
  • 16. ITTC Recommended Procedures and Guidelines. Practical guidelines for ship CFD application. 7.5-03-02-03. Revision 01. 2011.
  • 17. Celik I, Ghia U, Roache P, Freitas C, Coleman H, Raad P. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130(7), 078001-078004, 2008. DOI:10.1115/1.2960953.
  • 18. ITTC Recommended Procedures and Guidelines. Practical guidelines for ship CFD application. 7.5-03-02-03. Revision 01. 2011.
  • 19. ITTC Recommended Procedures and Guidelines. Seakeeping Experiments. 7.5-02 -07-02.1. Revision 04. 2014.
  • 20. ISO 2631. Mechanical vibration and shock-evaluation of human exposure to whole-body vibration. Part 1: General Requirements. International Organization for Standardization, Geneva, Switzerland, 1997.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ef1928c3-8589-47b3-92b7-2709d59402a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.