Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | Vol. 67, no. 6 | 1625--1636
Tytuł artykułu

Analysis of monthly streamflow series of the Litani River (Lebanon) by using spectral and topological methods

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims at investigating several dynamical parameters of the monthly variability of eight streamflow time series, recorded at different stations along the major courses and springs of the Litani River (Lebanon). The contribution of the annual periodicity to the total variance of the series depends on the geomorphological characteristics of the measuring sites. The long-term trend of five northern stations is more or less uniform, while that of the remaining southern three is characterized by a decreasing behaviour. The long-term trend of each streamflow series is, furthermore, featured by the presence of several peaks, mostly due to extreme rainfall events. Applying to the long-term trends the horizontal visibility graph, it was found that the North Atlantic Oscillation index could be a significant forcing of the complex fluctuations of the streamflows.
Wydawca

Czasopismo
Rocznik
Strony
1625--1636
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • National Council for Scientific Research, Beirut, Lebanon
  • Faculty of Sciences, Lebanese University, Beirut, Lebanon
  • National Council for Scientific Research, Beirut, Lebanon
Bibliografia
  • 1. Ahdesmäki M, Lähdesmäki H, Pearson R, Huttunen H, Yli-Harja O (2005) Robust detection of periodic time series measured from biological systems. BMC Bioinform 6:117. https://doi.org/10.1186/1471-2105-6-117
  • 2. Alexandrov T, Bianconcini S, Dagum EB, Maass P, McElroy TS (2014) A review of some modern approaches to the problem of trend extraction. Econ Rev 31:593–624
  • 3. Babu P, Stoica P (2010) Spectral analysis of nonuniformly sampled data—a review. Dig Signal Process 20:359–378
  • 4. CAL (Climatic Atlas of Lebanon) (1982) Meteorological services, vol II. Ministry of Work and Public Transport, p 40
  • 5. CNRSL (National Council for Scientific Research, Lebanon) (2015) Regional coordination on improved water resources management and capacity building. Regional project, GEF, WB
  • 6. Cover TM, Thomas JA (2006) Elements of information theory. Wiley, Hoboken
  • 7. Fiorillo F, Petitta M, Preziosi E, Rusi S, Esposito L, Tallini M (2015) Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environ Earth Sci 74:153–172. https://doi.org/10.1007/s12665-014-3946-6
  • 8. Geyer T, Birk S, Liedl R, Sauter M (2008) Quantification of temporal distribution of recharge in karst systems from spring hydrographs. J Hydrol 348:452–463. https://doi.org/10.1016/j.jhydrol.2007.10.015
  • 9. Hájek J, Sidák Z, Sen PK (1999) Theory of rank tests. Academic Press, New York
  • 10. Halihan T, Wicks CM, Engeln JF (1998) Physical response of a karst drainage basin to flood pulses: example of the Devil’s Icebox cave system (Missouri, USA). J Hydrol 204:24–36. https://doi.org/10.1016/S0022-1694(97)00104-2
  • 11. Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5:239–257
  • 12. Hoerling M, Jon Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2012) On the increased frequency of Mediterranean drought. J Climate 25:2146–2161
  • 13. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(5224):676–679
  • 14. Kawai R, Parrondo JMR, Van den Broeck C (2007) Dissipation: the phase-space perspective. Phys Rev Lett 98:080602
  • 15. Khan MAR, Poskitt DS (2010) Description length based signal detection in singular spectrum analysis. Monash econometrics and business statistics working papers 13/10. Monash University, Department of Econometrics and Business Statistics
  • 16. Lacasa L, Luque B, Ballesteros F, Luque J, Nuno JC (2008) From time series to complex networks: the visibility graph. Proc Natl Acad Sci USA 105:4972–4975. https://doi.org/10.1073/pnas.0709247105
  • 17. Lacasa L, Luque B, Luque J, Nuno JC (2009) The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion. Europhys Lett 86:30001
  • 18. Lacasa L, Nunez A, Roldan E, Parrondo JMR, Luque B (2012) Time series irreversibility: a visibility graph approach. Eur Phys J B 85:217
  • 19. Lamb PJ, Peppler RA (1987) North Atlantic Oscillation: concept and an application. Bull Am Meteorol Soc 68:1218–1225
  • 20. Lomb NR (1976) Least squares frequency analysis of unevenly spaced data. Astrophys Sp Sci 39:447–462
  • 21. Lopez-Moreno JI, Vicente-Serrano SM (2008) Positive and negative phases of the winter-time North Atlantic Oscillation and drought occurrence over Europe: multitemporal-scale approach. J Climate 21:1220–1241
  • 22. Lopez-Moreno JI, Vicente-Serrano SM, Moran-Tejeda E, Lorenzo-Lacruz J, Kenawy A, Beniston M (2011) Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: observed relationships and projections for the 21st century. Glob Planet Change 77:62–76. https://doi.org/10.1016/j.gloplacha.2011.03.003
  • 23. LRA (Litani River Authority) (2016). https://www.litani.gov.lb/en/
  • 24. LRA (Litani River Authority) (2018). https://www.litani.gov.lb/en/
  • 25. Luque B, Lacasa L, Luque J, Ballesteros F (2009) Horizontal visibility graphs: exact results for random time series. Phys Rev E 80:046103
  • 26. Massei N, Laignel B, Deloffre J, Mesquita J, Motelay A, Lafite R, Durand A (2010) Long-term hydrological changes of the Seine River flow (France) and their relation to the North Atlantic Oscillation over the period 1950–2008. Int J Climatol 30:2146–2154. https://doi.org/10.1002/joc.2022
  • 27. Munteanu C, Negrea C, Echim M, Mursula K (2016) Effect of data gaps: comparison of different spectral analysis methods. Ann Geophys 34:437–449
  • 28. Nassif N, Kchour H, Shaban A (2014) Temporal changes in the Lebanese Litani River: hydrological assessment and recommended actions to handle with the human and global change impacts. J Sci Res Rep 4:313–327
  • 29. Parrondo JMR, Van den Broeck C (2009) Kawai R (2009) Entropy production and the arrow of time. New J Phys 11:073008
  • 30. Pearson RK, Lähdesmäki H, Huttunen H, Yli-Harja O (2003) Detecting periodicity in nonideal datasets. In: Proceedings of the SIAM international conference on data mining: Cathedral Hill Hotel, San Francisco, 1–3 May 2003
  • 31. Priestley MB (1981) Spectral analysis and time series. Academic Press, London, p 890
  • 32. Romano E, Preziosi E (2013) Precipitation pattern analysis in the Tiber River basin (central Italy) using standardized indices. Int J Climatol 33:1781–1792
  • 33. Sanz E, Rosas P, Menendez-Pidal I (2016) Drainage and siphoning of a karstic spring: a case study. J Cave Karst Stud 78:183–197. https://doi.org/10.4311/2015ES0134
  • 34. Schoellhamer D (2001) Singular spectrum analysis for time series with missing data. Geophys Res Lett 28:3187–3190
  • 35. Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142:346–382
  • 36. Shaban A (2003) Etude de l’hydroélogie au Liban Occidental: Utilisation de la télédétection. Ph.D. dissertation. Bordeaux 1 Université, p 202
  • 37. Shaban A, Hamzé M (2018) The Litani River, Lebanon: an assessment and current challenges, vol 85. Springer, New York. https://doi.org/10.1007/978-3-319-76300-2
  • 38. Shaban A, Telesca L, Darwich T, Amacha N (2014) Analysis of long-term fluctuations in stream flow time series: an application to Litani River, Lebanon. Acta Geophys 62:164–179
  • 39. Soffer A (1999) Rivers of fire: the conflict over water in the Middle East. Rowman & Littlefield Publisher, Inc., New York, p 305
  • 40. Telesca L, Shaban A, Gascoin S, Darwich T, Drapeau L, El Hage M, Faour G (2014) Characterization of the time dynamics of monthly satellite snow cover data on Mountain Chains in Lebanon. J Hydrol 519:3214–3222
  • 41. Telesca L, Giocoli A, Lapenna V, Stabile TA (2015) Robust identification of periodic behavior in the time dynamics of short seismic series: the case of seismicity induced by Pertusillo Lake, southern Italy. Stoch Environ Res Risk Assess 29:1437–1446
  • 42. Telesca L, Flores-Márquez EL, Ramírez-Rojas A (2018) Time-reversibility in seismic sequences: application to the seismicity of Mexican subduction zone. Phys A 492:1373–1381
  • 43. Van Dongen H, Olofsen E, Van Hartevelt J, Kruyt E (1999) A procedure of multiple period searching in unequally spaced time-series with the Lomb–Scargle method. Biol Rhythm Res 30:149–177. https://doi.org/10.1076/brhm.30.2.149.1424
  • 44. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35:395–424
  • 45. Weiss G (1975) Time-reversibility of linear stochastic processes. J Appl Prob 12:831–836
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ef0e8cf2-34e3-47d3-93a5-bd4d64e5e30f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.