Czasopismo
2020
|
Vol. 32, no. 3
|
179--188
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Xanthones are well recognized as chemotaxonomic markers for the plants belonging to the genus Garcinia. Xanthones have many interesting pharmacological properties. Efficient extraction and rapid liquid chromatography methods are essentially required for qualitative and quantitative determination of xanthones in their natural sources. In the present investigation, fruit rinds extracts of 8 Garcinia species from India, were prepared with solvents of varying polarity. Identification and quantification of 3 xanthones, namely, α-mangostin, β-mangostin, and γ-mangostin in these extracts were carried out using a rapid and validated ultra-high-performance liquid chromatography–photodiode array detection (UHPLC–PDA) method at 254 nm. γ-Mangostin (3.97 ± 0.05 min) was first eluted, and it was followed by α-mangostin (4.68 ± 0.03 min) and β-mangostin (5.60 ± 0.04 min). The calibration curve for α-mangostin, β-mangostin, and γ- mangostin was linear in the concentration range 0.781–100 μg/mL. α-Mangostin was quantified in all 4 extracts of Garcinia mangostana. Its content (%) in hexane, chloroform, ethyl acetate, and methanol extracts of G. mangostana was 10.36 ± 0.10, 4.88 ± 0.01, 3.98 ± 0.004, and 0.044 ± 0.002, respectively. However, the content of α-mangostin was below the limit of detection or limit of quantification in the extracts of other Garcinia species. Similarly, β-mangostin was quantified only in hexane (1.17 ± 0.01%), chloroform (0.39 ± 0.07%), and ethyl acetate (0.28 ± 0.03%) extracts of G. mangostana. γ-Mangostin was quantified in all 4 extracts of G. mangostana. Its content (%) in hexane, chloroform, ethyl acetate, and methanol extracts of G. mangostana was 0.84 ± 0.01, 1.04 ± 0.01, 0.63 ± 0.04, and 0.15 ± 0.01, respectively. γ-Mangostin was also quantified in hexane (0.09 ± 0.01), chloroform (0.05 ± 0.01), and ethyl acetate (0.03 ± 0.01) extracts of G. cowa, ethyl acetate extract of G. cambogia (0.02 ± 0.01), G. indica (0.03 ± 0.01), and G. loniceroides (0.07 ± 0.01). Similarly, γ-mangostin was quantified in 3 extracts of G. morella, namely, hexane (0.03 ± 0.01), chloroform (0.04 ± 0.01), and methanol (0.03 ± 0.01). In the case of G. xanthochymus, γ-mangostin was quantified in chloroform (0.03 ± 0.001) extract only. α-Mangostin and β-mangostin were not detected in any of 4 extracts of G. pedunculata.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
179--188
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Deparment of Applied Chemistry, SVNIT, India
autor
- Waters (India) Pvt Ltd., S.G. Highway, India
autor
- Assam Agricutural University, India
autor
- Gogate Joglekar College, India
autor
- Regional Fruit Reseach Station, India
autor
- Assam Agricutural University, India
autor
- Assam Agricutural University, India
autor
- Kerala Agricultural University, India
autor
- The Energy and Resources Institute (TERI), North Eastern Regional Centre, India
autor
- ICAR-Indian Institute of Spices Research, India
autor
- Deparment of Applied Chemistry, SVNIT, India
autor
- ICAR-Directorate of Medicinal and Aromatic Plants Research, India
autor
- ICAR-Directorate of Medicinal and Aromatic Plants Research, India
autor
- ICAR-Directorate of Medicinal and Aromatic Plants Research, India
Bibliografia
- [1] Magadula, J. J.; Suleimani, H. O. Tanzan. J. Health Res. 2010, 12, 1–7.
- [2] Fransworth, N. R.; Bunyapraphatsara, N.; Thai medicinal plants: recommended for primary health care system. Medicinal Plant Information Center, 1992.
- [3] Akao, Y.; Nakagawa, Y.; Inuma, M.; Nozawa, Y. Int. J. Mol. Sci. 2008, 9, 335–370.
- [4] Walker E. B. J. Sep. Sci. 2007, 30, 1229–1234.
- [5] Moongkarndi, P.; Kosem, N.; Kaslungka, S.; Luanratana, O.; Pongpan, N.; Neungton, N.; J. Ethnopharmacol., 2004, 90, 161–166.
- [6] Garrity, A. R.; Morton, G. A.; Morton, G. C. Neutraceutical mangosteen composition; Official gazette of the United States patent and trade mark office patents, 1282 (1US6730333), 2004.
- [7] Nakatini, K.; Nakahata, N.; Arakawa, T.; Yasuda, H.; Ohizumi, Y. Biochem. Pharmacol. 2002, 63, 73–79.
- [8] Shan, T.; Cui, X. J.; Li, W.; Lin, W.; Lu, H.; Li, Y.; Chen, X.; Wu, T. Acta Pharmacol. Sin. 2014, 35, 1065–1073.
- [9] Choppa, T.; Selvaraj, C. I.; Abraham, Z. J. Food Sci. Technol. 2015, 52, 5906–5913.
- [10] Panthong, K.; Pongcharoen, W.; Phongpaichit, S.; Taylor, W. C. Phytochemistry, 2006, 67, 999–1004.
- [11] Shen, J.; Tian, Z.; Yang, J. S. Pharmazie 2007, 62, 541–549.
- [12] Mahabusarakam, W.; Chairek, P.; Taylor, W. C. Phytochemistry 2005, 66, 1148–1153.
- [13] Cheenpracha, S.; Phakhodee, W.; Ritthiwigrom, T.; Prawat, U.; Laphookhieo, S. Heterocycles 2011, 83, 1139–1144.
- [14] Trisuwan, K.; Ritthiwigrom, T. Arch. Pharm. Res. 2012, 35, 1733–1738.
- [15] Kaennakam, S.; Siripong, P.; Tip-pyang, S.; Kaennacowanols, A. C. Fitoterapia 2015, 102: 171–176.
- [16] Cotterill, P. J.; Scheinmann, F.; Puranik, G. S. Phytochemistry 1977, 16, 148–149.
- [17] Hooker J. D. Flora of British India, Reeve and Co. Ltd; England, 1872; pp. 264.
- [18] Obolskiy, D.; Pischel, I.; Siriwatanametanon, N.; Heinrich, M. Phytother. Res. 2009, 23, 1047–1065.
- [19] Jung, H. A.; Su, B. N.; Keller, W. J.; Mehta, R. G.; Kinghorn, A. D. J. Agric. Food Chem. 2006, 54, 2077–2082.
- [20] Peres, V.; Nagem, T. J.; Oliveira, F. F. Phytochemistry 2000, 55, 683–710.
- [21] Harrison N. L. J. Phytochemistry 2002, 60, 541–548.
- [22] Suksamran, S.; Suwannapoch, N.; Ratananukul, P.; Aroonlerk, N.; Suksamran, S. J Nat. Prod. 2002, 65, 761–763.
- [23] Choudhury, B.; Kandimalla, R.; Elancheran, R; Bharali, R. Biomed. Pharmacother. 2018, 103, 562–573.
- [24] Sarma, R.; Devi, R. Int. J. Pharm. Sci. Invent. 2015, 4, 420–28.
- [25] Mabberly D. J. The Plant Book: A Portable Dicttionary of the Higher Plants; Cambridge University, MIT Press, 1993.
- [26] Perry, L. M.; Metzger, J.; Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses, Cambridge University, MIT Press, 1980.
- [27] Chen, Y.; Zhong, F.; He, H.; Hu, Y.; Zhu, D.; Yang, G. Magn. Reson. Chem. 2008, 46, 1180–1184.
- [28] Han, Q. B.; Qiao, C. F.; Song, J. Z.; Yang, N. Y.; Cao, X. W.; Peng, Y.; Yang, D. J.; Chen, S. L.; Xu, H. X. Chem. Biodivers. 2007, 4, 940–946.
- [29] Zhong, F.; Chen, Y.; Wang, P.; Feng, H.; Yang, G. Chinese J. Chem. 2009, 27, 74–80.
- [30] Yodhnu, S.; Sirikatitham, A.; Wattanapiromsakul, C. J. Chromatogr. Sci. 2009, 47, 185–189.
- [31] Jing, Y. E.; Mei-tian, X.; Xue-qin, Z.; Ya-yan, H. Chinese J. Pharm. Anal. 2012, 32, 970–972.
- [32] Muchataridi, M.; Puteri, N. A.; Milanda, T.; Musfiroh, I. J. Appl. Pharm. Sci. 2017, 7, 125–130.
- [33] ICH Harmonised Tripartite Guideline Q2 (R1), Validation of Analytical Procedures: Text and Methodology, http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html (accessed Sep. 2018).
- [34] Jung, H.-A.; Su, B.-N; Keller, W.J.; Mehta, R.G.; Kinghorn, A.D. J. Agric. Food Chem. 2006, 54, 2077–2082.
- [35] Pothitirat, W.; Gritsanapan, W. Thai J. Agric. Sci. 2009, 42, 7–12.
Uwagi
PL
Błędna numeracja w bibliografii
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eed4e6dd-2561-46c4-9222-c0896709c458