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This paper describes models of opinion dynamics. It presents various ways of modelling opinion spreading in 
the population. The author proposes to apply complex networks to a model, which is based on the theory of 
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1. Introduction 
 
There has been an increasing interest in recent 
years in the study of models of opinion 
dynamics. The term opinion dynamics is wide 
and range from emergence of fads, minority 
opinion spreading, collective decision making, 
finding of consensus, emergence of political 
parties, emergence of extremism, rumour  
and fear propagation. The research of dynamic 
opinion models has become one of the 
mainstreams of new interdisciplinary field – 
sociophysics [1]. The sociophysics applies 
theories and methods originally developed by 
physicists in order to solve problems in  
the sociology. In the recently years researchers 
try to identify factors, which have a significant 
impact on process of changing an opinion by 
person. It causes that many models of dynamic 
opinion are developed. The most of those 
models use specific approach to construct  
a model and then verify the adequacy of these 
models. The model of dynamic opinion involves 
two elements: a population of individuals and  
a function of changing internal state of each 
individual. The population may refer to a small 
group for example work group or entire society. 
However, the individual is each person, who has 
internal features, which characterize psycho-
logical or physical predispositions of person. 
Individuals also act independently of others. 
Additionally, individuals have an opinion, which 
represents a belief of person based on thoughts 
and ideas with regard to specific subject.  
The opinion is an internal state of the individual. 

The process of changing opinion is a complex 
process affected by the interplay of  
different elements, including the individual 
predisposition, the influence of positive and 
negative peer interaction, the information each 
individual is exposed to, and many others. Based 
on nature of opinion space, the following models 
could be identified: model with discrete opinion 
space (classically binary opinions) and model 
with continuous opinion space (continuous 
opinion dynamics). This paper deals with models 
with discrete opinion space, but also review 
some models with continuous opinion space.  

Based on this general introduction to 
opinion dynamic models, it can notice that 
agent-based modelling is used to construct 
model and to perform simulations. In this 
context term agent means individual and those 
terms may be used interchangeably. The agent- 
-based modelling assumes that each agent acts 
independently of others and has internal features. 
Agents interact either directly or indirectly  
way through environment, which provides 
information about activities of the other agents. 
Every simulation step agent decides to change 
her internal state according to specified rules. 
The rule of changing state is a function 
depending on agent’s features and activities of 
the other agents. The state of agent for opinion 
dynamic model is currently supported opinion. 
The simulation is used to test the adequacy of 
model. The appropriate technique for performing 
simulation for agent-based approach is  
a Multi Agent Based Simulation (MABS).  
The MABS is a kind of micro simulation.  
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The micro simulation attempts to model specific 
behaviours of specific individuals. It’s 
contrasted to typical simulation techniques, 
which are based on mathematical models, 
describing whole population [2], [3], [4]. Thus, 
in macro simulations, the set of individuals is 
viewed as a structure that can be characterized 
by a number of variables, whereas in a micro 
simulations the structure is viewed as emergent 
from the interactions between the individuals. 
This methodology finds successful application  
in social simulation. An exhaustive presentation 
of agent based models is out of the scope of  
this paper. You could find an in-depth 
description of agent based methodology  
in [2], [3], [4]. 

The important element of dynamic opinion 
model is a environment. It is responsible for 
interacting between agents by modelling 
relations between agents. The environment is 
modelled as a network (graph) G = (V, E), where 
V represents the set of nodes and E represents 
the set of edges. Each node corresponds one 
agent in network. Thus, each agent in  
the network directly or indirectly influences 
others in the network. The network is usually 
represented by social network in the dynamic 
opinion model. The social network shows 
friendships or user interactions in a social media. 
It is a complex network and has the following 
important features [1], [5], [6]:  
a) an average distance between two random 

chosen node is small  
b) a clustering coefficient is high. In most of 

applications, the structure of network is 
fixed and doesn’t change during simulation. 
In this paper the structure of network is 
always fixed.  

Some type of complex network such as small- 
-world [7] or scale free [8], [9] are used in this 
paper. 

The aim of this article is to present social 
impact model, which is extended by adding  
the complex network as the representation of 
relations between agents. The paper also shows 
how to initial location of agents has impact on 
the final distribution opinions by using  
the different kinds of complex networks.  
The author also reviews models of dynamic 
opinion in order to show the ways of modelling 
spreading of opinions. 

The next section describes shortly different 
models of  opinion dynamics. Then proposed 
model is presented and simulation results  
are discussed. 

 
 

2. Models of opinion dynamics 
 
There are a different kind of opinion dynamics 
models, but all of them propose new attempt  
to formulate the way of opinion spreading.  
The process of formulation opinion usually 
defines opinion states and elementary processes 
that determine transitions between such states.  
In the next subsections, four models, which 
occur frequently in sociophysics literature,  
will be presented. 
 
Majority rule model 
 
The majority rule model [10] is a simple model 
of opinion dynamics. It is suitable for modelling 
public debate. Let’s consider a population  
of 𝑁 agents. Each agent is endowed with binary 
opinion s, where 𝑠 ∈ 𝑆 = {+1,−1}. The set of 
all agents 𝐴 is divided into two subset: 𝐴+  
and 𝐴−, where 𝐴+ represents agents with 
opinion +1 and 𝐴− represents agents with 
opinion –1. All agents can communicate with 
each other, so the graph of contacts is complete 
graph. At each simulation step a group of 𝑟 
agents (P) is randomly selected with uniform 
distribution. As a consequence of the interaction 
between selected agents, all agents take  
the majority opinion inside group. This is  
the basic principle of the majority rule  
(Figure 1). 

 
Fig. 1. The principle of majority rule model [1] 

 
The majority rule model can be defined in 

the following way: 
𝐴 = 𝐴+ ∪ 𝐴−, |𝐴| = 𝑁 

𝐴+ = {𝑎𝑖: 𝑠(𝑎𝑖) = 1 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑁} 
𝐴− = {𝑎𝑖: 𝑠(𝑎𝑖) = −1 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑁} 

𝑠:𝐴 → 𝑆, 𝑆 = {+1,−1} 
𝑃 = 𝑃+ ∪ 𝑃−,𝑃 ⊂ 𝐴,𝑃+ ⊂ 𝐴+,  𝑃− ⊂ 𝐴− 

|𝑃+| = 𝑘, |𝑃−| = 𝑚  
|𝑃| = 𝑟 = 𝑘 + 𝑚 

(1) 

where: 
𝐴 – a set of all agents 
𝑠(𝑎𝑖) – an opinion of agent i 
𝑃 – randomly selected set of agents 
𝑟 – a size of group, |𝑃| = 𝑟 
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Following rules of changing agent’s opinion 
are used at each simulation step: 
• If k > m then all agents 𝑎 ∈ 𝑃 change their 

current opinions into +1:  
∀𝑎 ∈ 𝑃− 𝑠(𝑎) = +1 (2) 

• If k < m then all agents 𝑎 ∈ 𝑃  change their 
current opinions into −1: 

∀𝑎 ∈ 𝑃+ 𝑠(𝑎) = −1 (3) 
• If k = m then agents 𝑎 ∈ 𝑃 don’t change 

their opinion. This situation is called as tie.  
• If agents 𝑎 ∈ 𝐴\𝑃 then their opinions aren’t 

changed, because they don’t take place in 
debate. 
A group of 𝑟 agent is some discussion 

group. This model applies to describe process of 
spread opinion in small group [10]. The factor 𝑟 
describing group size is not fixed but is defined 
by some distribution. Some researches show that 
if 𝑟 is odd, there is no way of occurring a tie, 
because the size of one group (𝑃+ or 𝑃−) is 
greater than the other group. If 𝑟 is even, instead, 
there is the possible of a tie, because a size of 𝑃+ 
and 𝑃− may be equal. In this case, one of 
solution is to introduce a bias in favour  
of opinion +1 or −1   [1], [11]. There are many 
variants of the majority rule model that are 
described in [11], [12]. 
 
Sznajd model 
 
The basic principle of Sznajd model is 
assumption that convincing somebody is easier 
for two or more people than for single individual 
[13]. Let’s consider a population of agents with 
discrete opinions 𝑆 = {−1,1} and agents occupy  
a place of linear chain. A pair of neighbouring 
agents i and 𝑖 + 1 determines the opinions of 
their nearest neighbours (𝑖 − 1 and 𝑖 + 2) 
according to two basic rules: 
 
If 𝑠𝑖 = 𝑠𝑖+1 then 𝑠𝑖−1 = 𝑠𝑖 =  𝑠𝑖+1 = 𝑠𝑖+2      (4) 
If 𝑠𝑖 ≠ 𝑠𝑖+1 then 𝑠𝑖−1 = 𝑠𝑖+1 and 𝑠𝑖+2 = 𝑠𝑖    (5) 

 
The rule (4) and (5) are called 

ferromagnetic rule and antiferromagnetic rule, 
respectively. According to ferromagnetic rule (4) 
if the agents of the pair have the same opinion, 
they impose their opinion on their neighbours. 
However, if the two agents disagree, each agent 
imposes its opinion on the other agent’s 
neighbours. These rules are shown in Figure 2. 
 

 
Fig. 2. The principle of Sznajd Model [1] 

 
The antiferromagnetic rule is unrealistic  

and in the most applications is not used [14]. 
Only the ferromagnetic rule applies. In this case,  
if the opinions of the pair of agents differ,  
they have no influence on their neighbours. 
There are many extensions of Sznajd model [1].  
The Sznajd model has found applications in 
different areas [14], [15]. In politics, it has been 
used to describe voting behaviour in elections.  
It has also adopted to model the competition of 
different products in open market and the spread 
of opinions among traders. 
 
Bounded confidence model 
 
The bounded confidence models represent 
continuous opinion dynamics model [16].  
The term of continuous refers to the opinion 
space and not to the time. Thus, opinions in 
bounded confidence model are represented by 
real number in range 0 to 1. The principle of 
these models is that each agent can interact with 
each other but true communication between 
agent takes place only if the opinion of agents 
involved in discussion is sufficiently close.  
This realistic aspect of human communications 
is called bounded confidence and it is expressed 
by introducing a real number 𝜀 into model.  
The number 𝜀 is called uncertainty or tolerance. 
Therefore each agent with opinion x can interact 
with other agent whose opinion lies in  
the interval [𝑥 − 𝜀, 𝑥 + 𝜀]. The most popular 
Bounded confidence models are Deffuant  
model [17] and Hegselmann–Krause model [18]. 
In Deffuant model two randomly selected agents 
i and j interact at the time t with opinion 
𝑥𝑖(𝑡), 𝑥𝑗(𝑡), respectively. If �𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)� < 𝜀 
then 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡), 𝑥𝑗(𝑡 + 1) = 𝑥𝑗(𝑡). 
Otherwise, the opinion of interacting agents is 
adjusted as follows: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝜇�𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)� 

𝑥𝑗(𝑡 + 1) = 𝑥𝑗(𝑡) + 𝜇�𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)� 
(6) 
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Where 𝜇 is the convergence parameter 
taken between 0 and 0,5.The Deffuant model is 
based on a compromise strategy: the positions  
of the interacting agents get closer to each  
other, by the relative amount 𝜇. This model  
is quite similar to Hegselmann–Krause.  
The Hegselmann–Krause model is given by: 

 

𝑥𝑖(𝑡 + 1) =
∑ 𝑥𝑗(𝑡)𝑗∈𝐼�𝑖,𝑥(𝑡)�

�𝐼�𝑖, 𝑥(𝑡)��
 

𝐼�𝑖, 𝑥(𝑡)� = �
1 ≤ 𝑗 ≤ 𝑁| �

�𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)� ≤ 𝜀𝑖
� ,

𝜀𝑖 > 0  

(7) 

where: 
𝑥𝑖(𝑡) – an opinion of agent i, 𝑥𝑖(𝑡) ∈ 〈0,1〉  
N – a number of agents 
𝜀𝑖 – a confidence level of agent i 
𝐼�𝑖, 𝑥(𝑡)� – a set of agent identifiers, where for 
each 𝑗 ∈ 𝐼�𝑖, 𝑥(𝑡)�, agent j interacts with agent i   
The difference is given by the update rule.  
In Deffuant model agent i interacts with only 
one of its neighbours, while in Hegselmann–
Krause model all its compatible neighbours 
affected an opinion xi of agent i. Thus, 
Deffuant’s model is suitable to describe  
the opinion dynamics of large populations, 
where people meet in small groups, like pairs.  
In contrast, Hegselmann–Krause rule is intended 
to describe formal meetings, where there is  
an effective interaction involving many people  
at the same time. More information about 
bounded confidence models can be found in [1], 
[19], [20]. 
 
Social impact theory 
 
The theory of social impact was introduced  
in [21] by Latane. The psychological theory of 
social impact describes how much impact is 
experienced by individuals. According to  
the theory, the social impact depends on three 
factors:  
S – the power of persuasion (the strength of 
source),  
I – the immediacy of the sources, 
N – the number of sources.  
The relation between these factor is  
usually presented as abstract function 
W = f (S, I, N) [22]. The factor S describes  
the ability to persuade another person.  
The immediacy can be viewed as physical 
distance between individuals.  

Suppose we have a population of N-agents. 
Each agent i is characterized by three factors: 
oi – current opinion supported by agent i, 

si – agent’s ability to convince someone to 
change or to keep its opinion, 
zi – max. distance  within agent’s surroundings, 
in which agent i can communicate with other 
agents. 

The total social impact Ii that an agent i 
experiences from its social environment is: 

Ii = ����
sj
dij2
�
2N

j=1

� (8) 

The factor dij is the distance of a pair of 
agents i and j. In original social impact model, 
agents are represented as cells in the square 
matrix. It is a form of a regular network. 
Therefore, the factor dij in this model is 
calculated as the Euclidean physical distance 
between the cells representing two individuals  
in the matrix. The principle of this model is 
assumption that agent changes his current 
opinion to an opinion, which has the greatest 
support in the agent's environment.  
This principle is called as conformity.  
The formal definition of the model is defined  
in the following way: 

 
𝐴 = {𝑎𝑖 = (𝑠𝑖 , 𝑧𝑖 , 𝑐𝑖 , 𝑜𝑖): 𝑠𝑖 ∈ (0,1),� 

                     𝑧𝑖 ∈ ℕ, 𝑐𝑖 ∈ 𝐶, 𝑜𝑖 ∈ 𝑃, �𝑖 = 1, … ,𝑁} 
|𝐴| = 𝑁 

𝑃 = {𝑝1, … , 𝑝𝐾}, |𝑃| = 𝐾 

𝐶 = {(𝑥, 𝑦): 1 ≤ 𝑥 ≤ 𝑁, 1 ≤ 𝑦 ≤ 𝑁, 𝑥, 𝑦 ∈ ℕ} 

𝑑𝑖𝑗 = ��𝑐𝑖 − 𝑐𝑗�2 = ��𝑥𝑖 − 𝑥𝑗�
2 + �𝑦𝑖 − 𝑦𝑗�

2𝑓𝑜𝑟 𝑖 ≠ 𝑗

1 𝑓𝑜𝑟 𝑖 = 𝑗
� 

𝑤𝑖 = [𝑤𝑖1𝑤𝑖2 …𝑤𝑖𝐾] 

𝑤𝑖𝑘 = ���
𝑠𝑗

�𝑑𝑖𝑗�
2 𝑓�𝑝𝑘 , 𝑜𝑗 ,𝑑𝑖𝑗 − 𝑧𝑖��

2𝑁

𝑗=1

 

𝑓:𝑃𝑥𝑅𝑥𝑅 → {0,1} 

 𝑓(𝑝, 𝑜,𝑑) = �1 𝑖𝑓 𝑑 ≤ 0 𝑎𝑛𝑑 𝑝 = 𝑜
0

� 

where: 
ai – an agent i 
wik – a value of support for opinion k for agent i 
P – a set of opinions 
ci – a coordinate of agent i in the grid (square 
matrix)  
f – a function that defines a possibility of 
communication between agents. 

The algorithm of changing agents’ opinions 
is given in the following way: 

for each agent ai , i = 1 to N do: 

(9) 
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- calculate wi 
- calculate 𝑢 = [𝑢1, … ,𝑢𝑁], where 

𝑢𝑖 = 𝑎𝑟𝑔max𝑘=1..𝐾 𝑤𝑖𝑘  
- 𝑜𝑖: = 𝑝𝑢𝑖  for  i = 1..N 

(10) 

One of main disadvantage of the social 
impact model is to ignore some realistic feature 
of social interaction i.e. the existence of  
a memory of individuals. The model can be 
modified to be used to model other processes 
related to social behaviour [1], [22], [23]. 

 
3. Proposed model 
 
The author proposed extended social impact 
model by introducing the social network [23] as 
an agent’s environment. The social impact 
model, originally proposed by Latane [21], uses 
a regular network to describe interactions 
between agents. It’s unrealistic the topology of 
interactions between people in society. 
Therefore, networks (regular, random, scale- 
-free, small-world, hierarchical) [6], [25], [27] 
are applied in the proposed model. The complex 
network can be represented as directed graph in 
the following way: 

𝐺 = 〈𝑉,𝐸〉 
𝐸 ⊂ 𝑉𝑥𝑉 

(11) 

where: 
G – a directed graph 
V – a set of nodes  
E – a set of edges.  

In the network each agent is represented by 
one node. Introducing network as an agent’s 
environment requires to redefine a way of 
calculating distance between agents (dij) in 
equation (9). The factor dij is the shortest path 
length between node vi and vj and it is calculated 
as the minimal number of edges linking nodes vi 
and vj: 

𝑑𝑖𝑗 = 𝑚𝑖𝑛�𝑙1�𝑣𝑖,𝑣𝑗�, … , 𝑙𝐻�𝑣𝑖, 𝑣𝑗��, 
𝑙ℎ:𝐸 → ℕ    
𝑖, 𝑗 ∈ 𝑉 

(12) 

where: 
dij – shortest path length between node vi and vj 
𝑙ℎ�𝑣𝑖, 𝑣𝑗� − the number of edges linking nodes 
vi and vj for path h 
 
4. Simulations 
 
The experiments were performed in order to 
investigate how the distribution of opinion in  
the population depends on parameter z.  
The setting of simulation is shown in Table 1. 
Table 2 presents detailed properties of networks 
used in experiments.  

Tab. 1. The setting simulation – the dependence  
of parameter d on the distribution  

of opinion in population 
 

Number of agents ~1000 
Number of opinions 2 
Network types Regular 

Random 
Scale-free 
Small-world 
Hierarchical 

Agent types: 
 

Strong agent 
Common agent  

Strong agent Population: 10% of 
population 

Power of 
persuasion (s): 0,8 

Parameter (z): 1…10 
Initial opinion 
(o):  Opinion 2 

Location in 
network: Random 

Common 
agent Population: 90% of 

population 
Power of 
persuasion (s): 0,2 

Parameter (z): 1…10 
Initial opinion 
(o):  Opinion 1 

Location in 
network: Random 

 
 

Tab. 2. The properties of networks used  
in experiments 

 

Property 

Network 

regular 
network 

scale-free 
network 

hierarchical 
network 

small- 
-world 

network 

random 
network 

The 
number  
of nodes 

900 1000 1025 1024 1000 

The 
number  
of edges 

1740 999 1024 4992 1000 

Average 
degree 1,933 1,998 0,999 4,875 1 

Network 
diameter 99 18 9 9 7 

Graph 
density 0,002 0,002 0,001 0,005 0,001 

 
Additionally, the Figure 3 shows networks 

used in experiments. 
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a) scale-free network 
 

 
 

b) small-world network 
 

 

c) hierarchical network 
 

 

d) regular network 
 

 
 

e) random network 

 
Fig. 3. Types of networks used in experiments 

 
Generally, five kind of complex networks were used. For each of these networks,  

the impact parameter z on the distribution of opinion was observed. The parameter z changed from 1  
to 10. The author assumed that all agents had the same value of parameter z. The simulation results are 
presented in Table 3. All values are averaged over 30 runs. 

 
Tab. 3. The simulation results 

 

Network 

z 
1 2 3 4 5 

Opinion 1 
[%] 

Opinion 2 
[%] 

Opinion 1 
[%] 

Opinion 2 
[%] 

Opinion 1 
[%] 

Opinion 2 
[%] 

Opinion 1 
[%] 

Opinion 2 
[%] 

Opinion 1 
[%] 

Opinion 2 
[%] 

regular 
network 94,67 5,33 95,33 4,67 98,07 1,93 98,81 1,19 99,63 0,37 

scale-free 
network 84,28 15,72 90,71 9,29 96,47 3,53 98,33 1,67 99,35 0,65 

hierarchical 
network 80,80 19,20 85,13 14,87 85,54 14,46 85,91 14,09 85,84 14,16 

small-world 95,36 4,64 99,96 0,04 100,00 0,00 100,00 0,00 100,00 0,00 
random 
network 

 

85,58 14,42 83,85 16,15 83,98 16,02 84,41 15,59 84,78 15,22 

Network 

z 
6 7 8 9 10 

Opinion 1 
[%] 

Opinion 2 
[%] 

Opinion 1 
[%] 

Opinion 2 
[%] 

Opinion 1 
[%] 

Opinion 2 
[%] 

Opinion 1 
[%] 

Opinion 2 
[%] 

Opinion 1 
[%] 

Opinion 2 
[%] 

regular 
network 99,62 0,38 99,87 0,13 99,89 0,11 99,96 0,04 99,93 0,07 

scale-free 
network 99,80 0,20 99,85 0,15 99,98 0,02 99,99 0,01 100,00 0,00 

hierarchical 
network 85,97 14,03 85,76 14,24 85,69 14,31 85,62 14,38 85,68 14,32 

small-world 100,00 0,00 100,00 0,00 100,00 0,00 100,00 0,00 100,00 0,00 
random 
network 

 

83,85 16,15 84,36 15,64 84,08 15,92 84,16 15,84 84,39 15,61 
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The Figure 4 shows the percentage of 
agents supporting opinion 1 (a) or opinion 2 (b) 
in population for different value of parameter z. 
 
a) 

 
 
b) 

 
 

Fig. 4. The graph of agents supporting opinion 1 (a) 
and opinion 2 (b) in population  

for different value of parameter z 
 
Based on simulation result, there is no 

correlation between z and distribution of 
opinions for random network and hierarchical 
network. In these networks, the increasing value 
of z has insignificant impact on the final 
distribution on opinion. For other network there 
is a relation between the value of z and  
the distribution of opinion. The experiment 
showed that small-world network is very 

sensitive for changing value of z. For z = 2 there 
is only one opinion, which is supported by entire 
population. The minority opinion 2 was 
complete disappeared. In the case of scale-free 
network and regular network this phenomenon 
(disappearance of minority opinion) occurs  
for z > 6. The explanation of this phenomenon is 
not intricate. It was mentioned early that  
the principle of social impact model is based on 
conformity. Additionally, the parameter z is 
responsible for scope of agent’s information 
about other agents’ opinions. Given these two 
factors we receive explanation of experiment 
results. If agents have high value of z and they 
change their opinion according to the conformity 
rule, it is expected that minority opinion will be 
complete dominated by majority opinion in  
the population. Thus, an opinion supported by 
small group will be disappeared from 
population. The experiment results for 
hierarchical network and random network are 
different from other, because these networks 
have specific structure, where increasing value 
of z doesn’t cause that the agents have more 
information about opinions in the population.  
In these network we observed that the set of 
agents’ neighbours for each agent is small and 
limited. The findings of this experiment reveal 
disadvantage of social impact model. There is  
no way to model behaviour based on non-
conformity rule using this model. In real 
community there are individuals that have a little 
(or no) ability to persuade others but on the other 
hand, it’s hard to convince them to change their 
opinions. This drawback limits the application of 
the social impact model. 

The complex network has many interesting 
properties but one of them is very interesting 
especially in connection with a problem of 
distribution of opinion. In these networks we 
could find some special nodes, which have high 
value of centrality. Many types of measures of 
centrality could be identified [28], [29], [35], but 
three measures were chosen, which were used  
in experiment: 
a) degree centrality [28] – it is defined as  

the number of adjacent edges of node  
(the degree of a node): 

𝐶𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖) = 𝑘𝑖 (13) 
where: 
ki – a number of edges connected to node vi 
The degree centrality measure, defined 
according to equation (13), does not allow  
for centrality values to be compared across 
different networks. It should be normalized  
in the following way: 

75 

80 

85 

90 

95 

100 

105 

1 2 3 4 5 6 7 8 9 10 

pe
rc

en
ta

ge
 o

f a
ge

nt
s s

up
po

rt
in

g 
th

e 
op

in
io

n 

Parameter z 

Opinion 1 

regular network scale -free network 
hierarchical network small World network 
random network 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

1 2 3 4 5 6 7 8 9 10 

pe
rc

en
ta

ge
 o

f a
ge

nt
s s

up
po

rt
in

g 
th

e 
op

in
io

n 

Parameter z 

Opinion 2 

regular network scale-free network 
hierarchical network small World network 
random network 



Damian Dzida, Using complex networks in social impact models 

 24 

𝐶𝑑𝑒𝑔𝑟𝑒𝑒𝑛𝑜𝑟𝑚 (𝑣𝑖) =
𝑘𝑖

𝑛 − 1
 (14) 

where: 
n – a number of nodes in network, 
ki – a number of edges connected to node 
vi. 
In directed networks, there are two types  
of degree centrality: in-degree and out- 
-degree [29]; 

b) closeness centrality [28], [29], [35] – it is 
defined as: 

𝐶𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑣𝑖) =
1
𝑑𝑣𝚤���� 

𝑑𝑣𝚤���� =
1

𝑛 − 1
� 𝑑𝑖𝑗

𝑗∈𝑉/{𝑣𝑖}

 
(15) 

where: 
n – a number of nodes in network, 
𝑑𝑖𝑗 − the shortest path length between node 
vi and node vj (the geodesic path), 
𝑑𝑣𝚤���� – the average shortest path length 
between node vi to other nodes; 

c) radius centrality [30], [35] – it is defined in 
the following way: 

𝐶𝑟𝑎𝑑𝑖𝑢𝑠(𝑣𝑖) =
1

max
𝑗∈𝑉

𝑑𝑖𝑗
 (16) 

where: 
𝑑𝑖𝑗 − the shortest path length between node 
vi and node vj. 
 
The measure of centrality is node property. 

A node which has high value of centrality 
measure is called hub. It means that this node 
plays an important role in the network and 
should have an impact on distribution of opinion 
in network. Therefore, some experiments were 
conducted with different scenarios in order to 
determinate the dependence of the position of 
the agent on the distribution of opinion in  
the population. According to the power of 
persuasion,  two types of agents are identified: 
“strong agent” and “common agent”.  
At the beginning of all simulations, strong 
agents supported opinion two and common 
agents supported opinion one. It was an 
assumption that the space of opinions is limited 
to only two opinions and the number of strong 
agents was 10% of all agents. The agents were 
located in nodes depending on the power of 
persuasion (s) and the value of centrality (C). 
The agent with high value of s was located on 
node with high value of centrality. The detailed 
setting of simulation for these experiments is 
shown in Table 4. 

 
Tab. 4. The setting of simulation – centrality measure 

experiment 
 
Number of agents ~1000 
Number of opinions 2 
Network types Regular 

Random 
Scale-free 
Small-world 
Hierarchical 

Agent types: 
 

Strong agent 
Common agent  

Strong agent Population: 10% of population 
Power of persuasion (s): 0,8 
Parameter z: 1 
Initial opinion (o): Opinion 2 

Common 
agent 

Population: 90% of population  
Power of persuasion (s): 0,2 
Parameter z: 1 
Initial opinion (o): Opinion 1  

 
The simulation results are shown on  

Figure 5. The Figure 5 a, b, c, d, e shows  
the distribution of opinion for each type of 
centrality measures and each type of network. 
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b) 

 
 
 
c) 

 
 

 
d) 

 
 
e) 

 
 

Fig. 5 a, b, c, d, e. The distribution of opinion 1  
for different type of complex network  

and the way of agent location 
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One can notice that the final support for 

opinion 2 is much higher than at the start of 
simulation for the most cases. It confirms that 
locating strong agents in nodes with high value 
of centrality has significant impact on  
the distribution of opinion in the population.  
It also indicates that the support for opinion 
depends on: the topology of interaction between 
agents (which is related to the type of network) 
and the way of locating agents. The following 
conclusions could be drawn: 
a) The location of strong agents in nodes  

with high value of degree centrality has  
the greatest impact on the distribution of 
opinion in scale-free network and small- 
-world network. There is no significant 
different between radius centrality and 
closeness centrality for all networks expect 
small-world network. Only for small-world, 
it could be noticed different between  
radius and closeness centrality. The radius 
centrality has less influence on  
the distribution of opinions for these 
network. 

b) The nodes with high value of radius 
centrality  or closeness centrality play a key 
role in the distribution of opinions in 
hierarchical network. Based on results,  
the number of agents supporting opinion 2 
is the biggest for radius centrality and 
closeness centrality. Similar result was 
obtained for regular network. Additionally, 
this result is opposite to result for scale-free 
network and small-world network. 
The experiment provided some interesting 

results for random network. The most of results 
obtained for this network are similar to results 
for other networks. One exception is result for 
out-degree centrality. This configuration caused 
that opinion 2 is complete dominated by  
opinion 1 and entire population finally supports 
opinion 1. The most likely reasons are:  
the network structure and the properties of social 
impact model. 

 
5. Conclusion 
 
In this paper, the author have presented  
the social impact model with the complex 
network as the topology of interaction between 
agents. The author have studied the use of 
different complex networks in the social impact 
model. The results have confirmed that  
the topology of interaction between agents have 
significant impact on the process of spreading 
opinions Many experiments were performed to 

evaluate the impact agent’s parameter z and  
the way of agent location in network on  
the distribution of opinions. The results of 
experiments, involved with the location of 
agents, showed that the agents’ location has 
highly influence on the final distribution of 
opinions in the population. It should be 
considered as a key element of models of 
opinion dynamics. There are several problem 
required further research. One of them is  
a problem with the location of agents. It’s an 
open question what decide that a specific agent 
is located in the hubs. In this paper, the power of 
persuasion (the feature of agent) was chosen but 
this problem requires further detailed research. 

The results also indicate that the effect of 
consensus occurs more frequently, when 
individuals have more information about  
the distribution of opinions in the population.  
It is caused by the basic principle of social 
impact model – conformity. 

In presented studies each agent 
communicated with all his neighbour’s agents in 
each simulate step. Interesting topic would be to 
introduce a probability of communication 
between agents.  Another interesting work would 
be to study the effect agent’s memory on 
spreading opinions.  

The experiments confirmed that the social 
impact model is inadequate to model real 
individual behaviour. Thus, the future work  
will focus on an extension of model by adding 
additional agent features that will be able to 
model complex agent behaviours, especially 
non-conformity behaviours. 
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Zastosowanie sieci złożonych w modelu wpływu społecznego 
 

D. DZIDA 
 
W artykule przedstawiono zagadnienia związane z modelowaniem dynamicznych modeli opinii. 
Zaprezentowano różne koncepcje dotyczące sposobu modelowania rozpowszechniania opinii w społeczeństwie. 
Zaproponowano modyfikację modelu opinii bazującego na teorii wpływu społecznego poprzez wprowadzenie 
sieci złożonych. Zbadano wpływ rozmieszczenia jednostek na ostateczny rozkład opinii dla różnych typów sieci 
złożonej. Dokonano również analizy wpływu wartości maksymalnego współczynnika odległości jednostek na 
końcowy rozkład opinii w społeczeństwie.  
 
Słowa kluczowe: model opinii, model wpływu społecznego, sieci złożone. 
 


