Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 41, no. 4 | 1685--1701
Tytuł artykułu

AutoCovNet: Unsupervised feature learning using autoencoder and feature merging for detection of COVID-19 from chest X-ray images

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the onset of the COVID-19 pandemic, the automated diagnosis has become one of the most trending topics of research for faster mass screening. Deep learning-based approaches have been established as the most promising methods in this regard. However, the limitation of the labeled data is the main bottleneck of the data-hungry deep learning methods. In this paper, a two-stage deep CNN based scheme is proposed to detect COVID-19 from chest X-ray images for achieving optimum performance with limited training images. In the first stage, an encoder-decoder based autoencoder network is proposed, trained on chest X-ray images in an unsupervised manner, and the network learns to reconstruct the X-ray images. An encoder-merging network is proposed for the second stage that consists of different layers of the encoder model followed by a merging network. Here the encoder model is initialized with the weights learned on the first stage and the outputs from different layers of the encoder model are used effectively by being connected to a proposed merging network. An intelligent feature merging scheme is introduced in the proposed merging network. Finally, the encoder-merging network is trained for feature extraction of the X-ray images in a supervised manner and resulting features are used in the classification layers of the proposed architecture. Considering the final classification task, an EfficientNet-B4 network is utilized in both stages. An end to end training is performed for datasets containing classes: COVID-19, Normal, Bacterial Pneumonia, Viral Pneumonia. The proposed method offers very satisfactory performances compared to the state of the art methods and achieves an accuracy of 90:13% on the 4-class, 96:45% on a 3-class, and 99:39% on 2-class classification.
Wydawca

Rocznik
Strony
1685--1701
Opis fizyczny
Bibliogr, 44 poz., rys., tab.
Twórcy
  • Department of EEE, BUET, Dhaka, Bangladesh
  • Department of EEE, BUET, Dhaka, Bangladesh
  • Department of EEE, BUET, Dhaka, Bangladesh
  • Department of EEE, BUET, Dhaka, Bangladesh
Bibliografia
  • [1] Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease (covid-19) outbreak in china: summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA 2019;323 (2020):1239–42.
  • [2] Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ace2 deficiency and sars-cov-2 infection. Eur J Internal Med 2020.
  • [3] Ng M-Y, Lee EY, Yang J, Yang F, Li X,Wang H, et al. Imaging profile of the covid-19 infection: radiologic findings and literature review. Radiol: Cardiothoracic Imaging 2020;2 e200034.
  • [4] Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in china: a report of 1014 cases. Radiology 2019;2020 200642.
  • [5] Wang C, Elazab A, Wu J, Hu Q. Lung nodule classification using deep feature fusion in chest radiography. Comput Med Imaging Graph 2017;57:10–8.
  • [6] H. Kim, S. Hwang, Scale-invariant feature learning using deconvolutional neural networks for weakly- supervised semantic segmentation, arXiv preprint arXiv:1602.04984 (2016).
  • [7] Soleymanpour E, Pourreza HR, et al. Fully automatic lung segmentation and rib suppression methods to improve nodule detection in chest radiographs. J Med Signals Sensors 2011;1:191.
  • [8] Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T et al., Chexnet: Radiologist-level pneumonia detection on chest Xrays with deep learning, arXiv preprint arXiv:1711.05225(2017).
  • [9] Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue Z, et al. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 2014;33:577–90.
  • [10] DeStigter K, Horton S, Atalabi OM, Garcia-Monaco RD, Gharbi HA, Hlabangana LT, et al. Equipment in the global radiology environment: Why we fail, how we could succeed. J Global Radiol 2019;5:3.
  • [11] Chen M, Shi X, Zhang Y, Wu D, Guizani M. Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans Big Data 2017.
  • [12] Tang Q, Liu Y, Liu H. Medical image classification via multiscale representation learning. Artif Intell Med 2017;79:71–8.
  • [13] Uzunova H, Schultz S, Handels H, Ehrhardt J. Unsupervised pathology detection in medical images using conditional variational autoencoders. Int J Comput Assist Radiol Surg 2019;14(3):451–61.
  • [14] Chen X, Yao L, Zhang Y, Residual attention u-net for automated multi-class segmentation of covid-19 chest ct images, arXiv preprint arXiv:2004.05645 (2020).
  • [15] Amyar A, Modzelewski R, Li H, Ruan S. Multi-task deep learning based ct imaging analysis for covid-19 pneumonia: classification and segmentation. Comput Biol Med 2020;126:104037.
  • [16] Chen X, Yao L, Zhou T, Dong J, Zhang Y. Momentum contrastive learning for few-shot covid-19 diagnosis from chest ct images. Pattern Recogn 2021;113:107826.
  • [17] Wang Z, Liu Q, Dou Q. Contrastive cross-site learning with redesigned net for covid-19 ct classification. IEEE J Biomed Health Inf 2020;24:2806–13.
  • [18] Wang L, Wong A, Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest X-ray images, arXiv preprint arXiv:2003.09871 (2020).
  • [19] Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U. Automated detection of covid-19 cases using deep neural networks with X-ray images. Comput Biol Med 2020;121:103792.
  • [20] Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 1251–8.
  • [21] Khan AI, Shah JL, Bhat MM. Coronet: A deep neural network for detection and diagnosis of covid-19 from chest X-ray images. Comput Methods Programs Biomed 2020;196:105581.
  • [22] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p. 770–8.
  • [23] Oh Y, Park S, Ye JC. Deep learning covid-19 features on cxr using limited training data sets. IEEE Trans Med Imaging 2020.
  • [24] Narin A, Kaya C, Pamuk Z, Automatic detection of coronavirus disease (covid-19) using X-ray images and deep convolutional neural networks, arXiv preprint arXiv:2003.10849 (2020).
  • [25] Ng A et al. Sparse autoencoder. CS294A Lecture Notes 2011;72:1–19.
  • [26] Tan M, Le Q, Efficientnet: Rethinking model scaling for convolutional neural networks, in: International Conference on Machine Learning, PMLR, 2019, pp. 6105–6114.
  • [27] Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L, et al. IEEE conference on computer vision and pattern recognition. Ieee 2009;2009:248–55.
  • [28] Lucas A, Iliadis M, Molina R, Katsaggelos AK. Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process Mag 2018;35:20–36.
  • [29] Pedamonti D, Comparison of non-linear activation functions for deep neural networks on mnist classification task, arXiv preprint arXiv:1804.02763 (2018).
  • [30] Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018;172:1122–1131.e9.
  • [31] Cohen JP, Morrison P, Dao L, Covid-19 image data collection, arXiv preprint arXiv:2003.11597 (2020).
  • [32] Dietterich TG. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 1998;10:1895–923.
  • [33] Lacoste A, Laviolette F, Marchand M, Bayesian comparison of machine learning algorithms on single and multiple datasets, in: Artificial Intelligence and Statistics, PMLR, 2012, pp. 665–675.
  • [34] Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med 2020:1.
  • [35] Sethy PK, Behera SK. Detection of coronavirus disease (covid-19) based on deep features. Preprints 2020;2020030300:2020.
  • [36] Hemdan EE-D, Shouman MA, Karar ME, Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in X-ray images, arXiv preprint arXiv:2003.11055 (2020).
  • [37] Mahmud T, Rahman MA, Fattah SA. Covxnet: A multidilation convolutional neural network for automatic covid-19 and other pneumonia detection from chest X-ray images with transferable multi- receptive feature optimization. Comput Biol Med 2020;122:103869.
  • [38] Abbas A, Abdelsamea MM, Gaber MM. Classification of covid-19 in chest X-ray images using detrac deep convolutional neural network. Appl Intel 2021;51:854–64.
  • [39] Hussain E, Hasan M, Rahman MA, Lee I, Tamanna T, Parvez MZ. Corodet: A deep learning based classification for covid-19 detection using chest X-ray images. Chaos Solitons Fractals 2021;142 110495.
  • [40] Ibrahim AU, Ozsoz M, Serte S, Al-Turjman F, Yakoi PS. Pneumonia classification using deep learning from chest Xray images during covid-19. Cognitive Comput 2021:1–13.
  • [41] Pham HH, Le TT, Tran DQ, Ngo DT, Nguyen HQ. Interpreting chest X-rays via cnns that exploit hierarchical disease dependencies and uncertainty labels. Neurocomputing 2021;437:186–94.
  • [42] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. p. 618–26.
  • [43] Weinstock MB, Echenique A, Russell J, Leib A, Miller J, Cohen D, et al. Chest X-ray findings in 636 ambulatory patients with covid-19 presenting to an urgent care center: a normal chest X-ray is no guarantee. J Urgent Care Med 2020;14:13–8.
  • [44] Wong HYF, Lam HYS, Fong A-T, Leung ST, Chin T-Y, Lo CSY, et al. Frequency and distribution of chest radiographic findings in patients positive for covid-19. Radiology 2020;296(2):E72–8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eeae3fba-1545-4938-86d0-68a6f683890f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.