Warianty tytułu
Nowatorska metoda poprawy jakości energii za pomocą systemu hybrydowego
Języki publikacji
Abstrakty
Ever increasing electricity demand as well as the rapid depletion of fossil fuels have increased the need for hybrid power systems that integrate distributed energy resource (DER) systems; such as solar photovoltaic (PV) systems and battery storage systems; with electrical grids. Therefore, this present study used MATLAB/Simulink to demonstrate the ability of DER inverters to provide reactive power that regulates grid voltage, decreases the total harmonic distortion (THD), decreases the amount of active power lost, and improves the capacity and power quality of a modified IEEE 13-bus test system. The study found that the injection/Absorption of the reactive power from a 400KW (PV-Battery) system in bus 675, 500KW (PV-Battery) system in bus 671, and 200 KW.h battery storage system in bus 634 decreased the power output of the main generator by 24.6%. When used in situ, the reactive power capability of the DER inverters significantly improved the voltage while an injection of reactive power decreased the THD voltage of bus 675 phase B by 81.26% when absorbing reactive power as well as decreased active power losses.
Stale rosnące zapotrzebowanie na energię elektryczną oraz szybkie wyczerpywanie się paliw kopalnych zwiększyły zapotrzebowanie na hybrydowe systemy zasilania, które integrują systemy rozproszonych źródeł energii (DER); takie jak systemy fotowoltaiczne (PV) i systemy magazynowania baterii; z sieciami elektrycznymi. Dlatego w niniejszym badaniu wykorzystano MATLAB/Simulink do wykazania zdolności falowników DER do dostarczania mocy biernej, która reguluje napięcie sieci, zmniejsza całkowite zniekształcenia harmoniczne (THD), zmniejsza ilość utraconej mocy czynnej oraz poprawia wydajność i jakość mocy zmodyfikowany system testowy IEEE 13-bus. Badanie wykazało, że wtrysk/pobór mocy biernej z systemu 400KW (PV-Battery) w magistrali 675, 500KW (PV-Battery) w magistrali 671 i 200KW.h systemu magazynowania baterii w magistrali 634 zmniejszyło moc moc głównego generatora o 24,6%. W przypadku zastosowania in situ, moc bierna falowników DER znacznie poprawiła napięcie, podczas gdy wprowadzenie mocy biernej zmniejszyło napięcie THD szyny 675 fazy B o 81,26% podczas pochłaniania mocy biernej, a także zmniejszyło straty mocy czynnej.
Czasopismo
Rocznik
Tom
Strony
167--174
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Department of Electrical Engineering, College of Engineering, University of Mosul, Iraq
autor
- Department of Electrical Engineering, College of Engineering, University of Mosul, Iraq
Bibliografia
- [1] R. H. A. Zubo, G. Mokryani, H. S. Rajamani, J. Aghaei, T. Niknam, and P. Pillai, “Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review,” Renew. Sustain. Energy Rev., vol. 72, no. May, pp. 1177–1198, 2017, doi: 10.1016/j.rser.2016.10.036.
- [2] J. P. Ram, H. Manghani, D. S. Pillai, T. S. Babu, M. Miyatake, and N. Rajasekar, “Analysis on solar PV emulators: A review,” Renew. Sustain. Energy Rev., vol. 81, no. July 2017, pp. 149–160, 2018, doi: 10.1016/j.rser.2017.07.039.
- [3] A. F. A. Kadir, T. Khatib, and W. Elmenreich, “Integrating photovoltaic systems in power system: Power quality impacts and optimal planning challenges,” Int. J. Photoenergy, vol. 2014, 2014, doi: 10.1155/2014/321826.
- [4] A. Alshahrani, S. Omer, Y. Su, E. Mohamed, and S. Alotaibi,“The technical challenges facing the integration of small-scaleand large-scale PV systems into the grid: A critical review,” Electron., vol. 8, no. 12, 2019, doi: 10.3390/electronics8121443.
- [5] T. Adefarati and R. C. Bansal, “Integration of renewable distributed generators into the distribution system: A review,”IET Renew. Power Gener., vol. 10, no. 7, pp. 873–884, 2016, doi: 10.1049/iet-rpg.2015.0378.
- [6] R. Singh and R. C. Bansal, “Review of HRESs based on storage options, system architecture and optimisation criteria and methodologies,” IET Renew. Power Gener., vol. 12, no. 7, pp. 747–760, 2018, doi: 10.1049/iet-rpg.2017.0603.
- [7] R. Tonkoski and L. A. C. Lopes, “Voltage regulation in radial distribution feeders with high penetration of photovoltaic,” 2008 IEEE Energy 2030 Conf. ENERGY 2008, no. Lv, 2008, doi: 10.1109/ENERGY.2008.4781021.
- [8] M. L. Kolhe and M. J. M. A. Rasul, “3-Phase grid-connected building integrated photovoltaic system with reactive power control capability,” Renew. Energy, vol. 154, pp. 1065–1075, 2020, doi: 10.1016/j.renene.2020.03.075.
- [9] K. Emmanuel, T. Antonis, Y. Katsigiannis, and M. Moschakis,“Impact of increased RES generation on power systems dynamic performance,” Mater. Sci. Forum, vol. 721, pp. 185–190, 2012, doi: 10.4028/www.scientific.net/MSF.721.185.
- [10] L. B. G. Campanhol, S. A. Oliveira Da Silva, L. P. Sampaio, and A. O. Azauri, “A grid-connected photovoltaic power system with active power injection, reactive power compensation and harmonic filtering,” 2013 Brazilian Power Electron. Conf. COBEP 2013 - Proc., no. April 2016, pp. 642–649, 2013, doi: 10.1109/COBEP.2013.6785183.
- [11] S. Vlahinić, D. Franković, V. Komen, and A. Antonić, “Reactive power compensation with PV inverters for system loss reduction,” Energies, vol. 12, no. 21, pp. 1–17, 2019, doi: 10.3390/en12214062.
- [12] R. A. Othman and O. S. A. D. Al-Yozbaky, “Effect of Reactive Power Capability of the PV Inverter on the Power System Quality,” Indones. J. Electr. Eng. Informatics, vol. 10, no. 4, pp. 780–795, 2022, doi: 10.52549/ijeei.v10i4.3913.
- [13] H. Li, C. Wen, K. H. Chao, and L. L. Li, “Research on inverter integrated reactive power control strategy in the grid-connected PV systems,” Energies, vol. 10, no. 7, 2017, doi: 10.3390/en10070912.
- [14] W. H. Kerting, “Radial distribution test feeders IEEE distribution planning working group report,” IEEE Trans. Power Syst., vol. 6, no. 3, pp. 975–985, 1991, doi: 10.1109/59.119237.
- [15] Z. Yi, W. Dong, and A. H. Etemadi, “A Centralized Power Control and Management Method for Grid-Connected Photovoltaic (PV)-Battery Systems,” arXiv Optim. Control, no. September, 2017, doi: 10.48550/arXiv.1709.09219.
- [16] E. D. Kostopoulos, G. C. Spyropoulos, and J. K. Kaldellis,“Real-world study for the optimal charging of electric vehicles,” Energy Reports, vol. 6, pp. 418–426, 2020, doi: 10.1016/j.egyr.2019.12.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ee00a4c5-ec80-4bdf-8b63-bf40d0825ae0