Warianty tytułu
Języki publikacji
Abstrakty
Droughts and heatwaves are natural phenomena that can cause severe damage to the economy, infrastructure, human health, and agriculture, among others. However, in recent years, it has been noted that their combined effect, known as compound drought and heatwave events (CDHE), often results in even greater harm. The main aim of this study was to identify CDHEs in this region during summers from 1950 to 2022 and assess the frequency and intensity of these events. To this end, the periods of droughts and heatwaves that occurred between 1950 and 2022 were determined, and the recurrence, extent, and intensity of these phenomena were evaluated. In this study, 1-month Standard Precipitation Index (SPI) values calculated for each summer day were used to identify droughts, while heatwaves were defined as a period of five or more consecutive days when the daily maximum air temperature (Tmax) was higher than the 90th percentile of Tmax. Precipitation and Tmax data (with a spatial resolution 0.25° x 0.25°) were obtained from the European Centre of Medium-Range Weather Forecast ERA-5 reanalysis dataset. The study showed that in most of the eastern part of the Baltic Sea region, the number of drought days had decreased from 1950 to 2022, while the number of heatwave days had increased significantly. In total, ten CDHEs were identified during the summers of 1950–2022. Eight of these events were recorded in 1994 or later. However, a statistically significant increase of CDHEs was found only in a small part of the study area.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
26--36
Opis fizyczny
Bibliogr. 68 poz., map., wykr.
Twórcy
autor
- Institute of Geosciences, Vilnius University, Vilnius, Lithuania, laurynas.klimavicius@chgf.vu.lt
autor
- Institute of Geosciences, Vilnius University, Vilnius, Lithuania
Bibliografia
- 1. Awasthi, A., Vishwakarma, K., Pattnayak, K.C., 2022. Retrospection of heatwave and heat index. Theor. Appl. Climatol. 147 (1—2), 589-604. https://doi.org/10.1007/s00704-021-03854-z
- 2. BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Helmholtz-Zentrum Geesthacht GmbH, Germany, 501 pp.
- 3. Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Båserud, L., Izsák, B., Szentes, O., Tveito, O.E., Frei, C., 2022. Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by com-parison to regional high-resolution datasets in European regions. Int. J. Climatol. 42 (2), 727-747. https://doi.org/10.1002/joc.7269
- 4. Basarin, B., Luki´c, T., Matzarakis, A., 2020. Review of biometeorology of heatwaves and warm extremes in Europe. Atmosphere 11 (12), 1-21. https://doi.org/10.3390/atmos11121276
- 5. Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Soci, C., Villaume, S., Bidlot, J.R., Haimberger, L., Woollen, J., Buontempo, C., Thépaut, J.N., 2021. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorol. 147 (741), 4186-4227. https://doi.org/10.1002/qj.4174
- 6. Bezak, N., Mikoš, M., 2020. Changes in the compound drought and extreme heat occurrence in the 1961—2018 period at the european scale. Water (Switz.) 12 (12). https://doi.org/10.3390/w12123543
- 7. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcivall, J.M., Papale, D., Pilegaard, K., Ramball, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437 (7058), 529-533. https://doi.org/10.1038/nature03972
- 8. ECMWF, 2023. ERA5: uncertainty estimation Accessed on May 30 th , 2023. https://confluence.ecmwf.int/display/CKB/ERA5%3A+uncertainty+estimation
- 9. Feng, Y., Liu, W., Sun, F., Wang, H., 2020. Changes of compound hot and dry extremes on different land surface conditions in China during 1957—2018. Int. J. Climatol. 41 (S1), E1085-E1099. https://doi.org/10.1002/joc.6755
- 10. García-León, D., Casanueva, A., Standardi, G., Burgstall, A., Flouris, A.D., Nybo, L., 2021. Current and projected regional economic impacts of heatwaves in Europe. Nat. Commun. 12 (1), 1-10. https://doi.org/10.1038/s41467-021-26050-z
- 11. Gazol, A., Camarero, J.J., 2022. Compound climate events increase tree drought mortality across European forests. Sci. Total Environ. 816, 151604. https://doi.org/10.1016/j.scitotenv.2021. 151604
- 12. Geirinhas, J.L., Russo, A., Libonati, R., Sousa, P.M., Miralles, D.G., Trigo, R.M., 2021. Recent increasing frequency of compound summer drought and heatwaves in Southeast Brazil. Environ. Res. Lett. 16 (3). https://doi.org/10.1088/1748-9326/abe0eb
- 13. He, Y., Fang, J., Xu, W., Shi, P., 2022. Substantial increase of compound droughts and heatwaves in wheat growing seasons worldwide. Int. J. Climatol. 42 (10), 5038-5054. https://doi.org/10.1002/joc.7518
- 14. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. 146 (730), 1999—2049. https://doi.org/10.1002/qj.3803
- 15. Ionita, M., Caldarescu, D.E., Nagavciuc, V., 2021a. Compound Hot and Dry Events in Europe: Variability and Large-Scale Drivers. Front. Clim. 3 (June), 1-19. https://doi.org/10.3389/fclim.2021.688991
- 16. Ionita, M., Nagavciuc, V., 2021b. Changes in drought features at the European level over the last 120 years. Nat. Hazards Earth Syst. Sci. 21 (5), 1685-1701. https://doi.org/10.5194/nhess-21-1685- 2021
- 17. Jaagus, J., Aasa, A., 2018. Changes in drought indices in Estonia during the period of the contemporary climate warming. In: Proceedings of the 2nd Baltic Earth Conference, 11-15 June 2018. Helsingør, Denmark.
- 18. Jaagus, J., Aasa, A., Aniskevich, S., Boincean, B., Bojariu, R., Briede, A., Danilovich, I., Castro, F.D., Dumitrescu, A., Labuda, M., Labudová, L., Lõhmus, K., Melnik, V., Mõisja, K., Pongracz, R., Potopová, V., ˇRezníˇcková, L., Rimkus, E., Semenova, I., Stoneviˇcius, E., Štepánek, P., Trnka, M., Vicente-Serrano, S.M., Wibig, J., Zahradníˇcek, P., 2022. Long-term changes in drought indices in eastern and central Europe. Int. J. Climatol. 42 (1), 225-249. https://doi.org/10.1002/joc.7241
- 19. Keršyt˙e, D., Rimkus, E., Kažys, J., 2015. Klimato rodiklių scenarijai Lietuvos teritorijoje XXI a. Geologija. Geografija 1 (1), 22-35. https://doi.org/10.6001/geol-geogr.v1i1.3069
- 20. Kim, S., Sinclair, V.A., Räisänena, J., Ruuhelac, R., 2018. Heat waves in Finland: Present and projected summertime extreme temperatures and their associated circulation patterns. Int. J. Climatol. 38 (3), 1393-1408. https://doi.org/10.1002/joc.5253
- 21. Kong, Q., Guerreiro, S.B., Blenkinsop, S., Li, X.F., Fowler, H.J., 2020. Increases in summertime concurrent drought and heatwave in Eastern China. Weather Clim. Extremes 28, 100242. https://doi.org/10.1016/j.wace.2019.100242
- 22. Lavers, D.A., Simmons, A., Vamborg, F., Rodwell, M.J., 2022. An evaluation of ERA5 precipitation for climate monitoring. Q. J. R. Meteorol. 148 (748), 3152-3165. https://doi.org/10.1002/qj.4351
- 23. Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., Mcinnes, K., Risbey, J., Schuster, S., Jakob, D., Stafford-Smith, M., 2014. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5 (1), 113-128. https://doi.org/10.1002/wcc.252
- 24. Liu, X., He, B., Guo, L., Huang, L., Chen, D., 2020. Similarities and Differences in the Mechanisms Causing the European Summer Heatwaves in 2003, 2010, and 2018. Earth’s Future 8 (4), 1-11. https://doi.org/10.1029/2019EF001386
- 25. Markonis, Y., Kumar, R., Hanel, M., Rakovec, O., Máca, P., Kouchak, A.A., 2021. The rise of compound warm-season droughts in Europe. Sci. Adv. 7 (6), 1-8. https://doi.org/10.1126/sciadv.abb9668
- 26. Mazdiyasni, O., AghaKouchak, A., 2015. Substantial increase in concurrent droughts and heatwaves in the United States. PNAS 112 (37), 11484-11489. https://doi.org/10.1073/pnas.1422945112
- 27. McKee, T.B., Doesken, N.J., Kleist, J., 1993. The Relationship of Drought Frequency and Duration to Time Scales. In: Proceedings of the 8th Conference on Applied Climatology, 17-22 January 1993, Anaheim, CA. Messori, G., Bevacqua, E., Caballero, R., Coumou, D., De Luca, P., Faranda, D., Kornhuber, K., Martius, O., Pons, F., Raymond, C., Ye, K., Yiou, P., Zscheischler, J., 2021. Compound climate events and extremes in the midlatitudes: Dynamics, simulation, and statistical characterization. Bull. Am. Meteorol. Soc. 102 (4), 774-781. https://doi.org/10.1175/BAMS-D-20-0289.1
- 28. Mukherjee, S., Ashfaq, M., Mishra, A.K., 2020. Compound Drought and Heatwaves at a Global Scale: The Role of Natural Climate Variability-Associated Synoptic Patterns and Land-Surface Energy Budget Anomalies. J. Geophys. Res.: Atmos. 125 (11), 0-19. https://doi.org/10.1029/2019JD031943
- 29. Mukherjee, S., Mishra, A.K., 2020. Increase in Compound Drought and Heatwaves in a Warming World. Geophys. Res. Lett. 48 (1),1-13. https://doi.org/10.1029/2020GL090617
- 30. Mukherjee, S., Mishra, A.K., Ashfaq, M., Kao, S.C., 2022. Relative effect of anthropogenic warming and natural climate variability to changes in Compound drought and heatwaves. J. Hydrol. 605 (September 2021), 127396. https://doi.org/10.1016/j.jhydrol.2021.127396
- 31. Nogueira, M., 2020. Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences. J. Hydrol. 583 (January), 124632. https://doi.org/10.1016/j.jhydrol.2020.124632
- 32. Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sc. 11, 1633-1644. https://doi.org/10.5194/hess-11-1633-2007
- 33. Perkins-Kirkpatrick, S.E., Gibson, P.B., 2017. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 7 (1), 1-12. https://doi.org/10.1038/s41598-017-12520-2
- 34. Porebska, M., Zdunek, M., 2013. Analysis of extreme temperaturę events in central Europe related to high pressure blocking situations in 2001-2011. Meteorol. Z. 22 (5), 533-540. https://doi.org/10.1127/0941-2948/2013/0455
- 35. Prodhomme, C., Materia, S., Ardilouze, C., White, R.H., Batté, L., Guemas, V., Fragkoulidis, G., García-Serrano, J., 2022. Seasonal prediction of European summer heatwaves. Clim. Dynam. 58 (7—8), 2149-2166. https://doi.org/10.1007/s00382-021-05828-3
- 36. Ribeiro, A.F.S, Russo, A., Gouveia, C.M., Páscoa, P., Zscheischler, J., 2020. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 17 (19), 4815-4830. https://doi.org/10.5194/bg-17-4815-2020
- 37. Ridder, N.N., Pitman, A.J., Westra, S., Ukkola, A., Hong, X.Do, Bador, M., Hirsch, A.L., Evans, J.P., Di Luca, A., Zscheischler, J., 2020. Global hotspots for the occurrence of compound events. Nat. Commun. 11 (1), 1-10. https://doi.org/10.1038/s41467-020-19639-3
- 38. Rimkus, E., Kažys, J., Valiukas, D., Stank¯unaviˇcius, G., 2014. The atmospheric circulation patterns during dry periods in Lithuania. Oceanologia 56 (2), 223-239. https://doi.org/10.5697/oc.56-2.223
- 39. Rimkus, E., Maciulyte, V., Stonevicius, E., Valiukas, D., 2020. A revised agricultural drought index in Lithuania. Agric. Food Sci. 29 (4), 359-371. https://doi.org/10.23986/afsci.92150
- 40. Rimkus, E., Stoneviˇcius, E., Korneev, V., Kažys, J., Valiuškeviˇcius, G., Pakhomau, A., 2013. Dynamics of meteorological and hydrological droughts in the Neman River basin. Environ. Res. Lett. 8 (4). https://doi.org/10.1088/1748-9326/8/4/045014
- 41. Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F., Coumou, D., 2022. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 13 (1), 1-11. https://doi.org/10.1038/s41467-022-31432-y
- 42. Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Larsén, X.G., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., Wasmund, N., 2022. Natural hazards and extreme events in the Baltic Sea region. Earth Syst. Dynam. 13 (1), 251-301. https://doi.org/10.5194/esd-13-251-2022
- 43. Sedlmeier, K., Feldmann, H., Schädler, G., 2018. Compound summer temperature and precipitation extremes over central. Europe. Theor. Appl. Climatol. 131 (3—4), 1493-1501. https://doi.org/10.1007/s00704-017-2061-5
- 44. Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., Mc Innes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., 2012. Changes in climate extremes and their impacts on the natural physical environment. In: Field, C.B., Barros, V., Stocker, T.F, Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., Tignor, M., Midgley, P.M. (Eds.), A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 109-230.
- 45. Seneviratne, S.I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S.M., Wehner, M., Zhou, B., 2021. Weather and Climate Extreme Events in a Changing Climate. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513-1766.
- 46. Sharma Sharma, S., Mujumdar, P., 2017. Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Sci. Rep. 7 (1), 1-9. https://doi.org/10.1038/s41598-017-15896-3
- 47. Shi, Z., Jia, G., Zhou, Y., Xu, X., Jiang, Y., 2021. Amplified intensity and duration of heatwaves by concurrent droughts in China. Atmos. Res. 261 (April), 105743. https://doi.org/10.1016/j.atmosres.2021.105743
- 48. Somorowska, U., 2016. Changes in drought conditions in Poland over the past 60 years evaluated by the standardized precipitation-evapotranspiration index. Acta Geophys. 64 (6), 2530-2549. https://doi.org/10.1515/acgeo-2016-0110
- 49. Sousa, P.M., Trigo, R.M., Barriopedro, D., Soares, P.M.M., Santos, J.A., 2018. European temperature responses to blocking and ridge regional patterns. Clim. Dynam. 50 (1-2), 457-477. https://doi.org/10.1007/s00382-017-3620-2
- 50. Spensberger, C., Madonna, E., Boettcher, M., Grams, C.M., Papritz, L., Quinting, J.F., Röthlisberger, M., Sprenger, M., Zschenderlein, P., 2020. Dynamics of concurrent and sequential Central European and Scandinavian heatwaves. Q. J. R. Meteorol. 146 (732), 2998-3013. https://doi.org/10.1002/qj.3822
- 51. Suursaar, Ü., 2022. Summer 2021 marine heat wave in the Gulf of Finland from the perspective of climate warming. Est. J. Earth Sci. 71 (1), 1-16. https://doi.org/10.3176/earth.2022.01
- 52. Tomczyk, A.M., Bednorz, E., Matzarakis, A., 2020. Human-biometeorological conditions during heat waves in Poland. Int. J. Climatol. 40 (12), 5043-5055. https://doi.org/10.1002/joc.6503
- 53. Tsakiris, G., Vangelis, H., 2004. Towards a Drought Watch System based on spatial SPI. Water Resour. Manage. 18 (1), 1-12. https://doi.org/10.1023/B:WARM.0000015410.47014.a4
- 54. Valiukas, D., 2015. Analysis of droughts and dry periods in Lithuania. Summary of doctoral thesis. Vilnius University. Velikou, K., Lazoglou, G., Tolika, K., Anagnostopoulou, C., 2022. Reliability of the ERA5 in Replicating Mean and Extreme Temperatures across Europe. Water (Switz.). 14 (4). https://doi.org/10.3390/w14040543
- 55. Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23 (7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
- 56. Vyshkvarkova, E., Sukhonos, O., 2022. Compound Extremes of Air Temperature and Precipitation in Eastern Europe. Climate 10, 133. https://doi.org/10.3390/cli10090133
- 57. Wang, C., Li, Z., Chen, Y., Li, Y., Liu, X., Hou, Y., Wang, X., Kulaixi, Z., Sun, F., 2022. Increased Compound Droughts and Heatwaves in a Double Pack in Central Asia. Remote Sens. 14 (13), 1-19. https://doi.org/10.3390/rs14132959
- 58. Wazneh, H., Gachon, P., Laprise, R., de Vernal, A., Tremblay, B., 2021. Atmospheric blocking events in the North Atlantic: trends and links to climate anomalies and teleconnections. Clim. Dynam. 56 (7—8), 2199-2221. https://doi.org/10.1007/s00382-020-05583-x
- 59. Wibig, J., 2017. Heat waves in Poland in the period 1951-2015: trends, patterns and driving factors. Meteorology Hydrology and Water Management 6 (1), 1-10. https://doi.org/10.26491/mhwm/78420
- 60. Wibig, J., 2021. Hot days and heat waves in Poland in the period 1951-2019 and the circulation factors favoring the most extreme of them. Atmosphere 12 (3). https://doi.org/10.3390/atmos12030340
- 61. WMO, 2012. Standardized Precipitation Index User Guide. WMO-No. 1090, Geneva. Accessed on February 12th, 2023. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1208&context=droughtfacpub
- 62. Wu, X., Hao, Z., Hao, F., Singh, V.P., Zhang, X., 2019. Dry-hot magnitude index: A joint indicator for compound event analysis. Environ. Res. Lett. 14 (6). https://doi.org/10.1088/1748-9326/ab1ec7
- 63. Yoon, D., Cha, D.H., Lee, M.I., Min, K.H., Kim, J., Jun, S.Y., Choi, Y., 2020. Recent changes in heatwave characteristics over Korea. Clim. Dynam. 55 (7—8), 1685-1696. https://doi.org/10.1007/s00382-020-05420-1
- 64. Zhang, Q., She, D., Zhang, L., Wang, G., Chen, J., Hao, Z., 2022. High Sensitivity of Compound Drought and Heatwave Events to Global Warming in the Future. Earth’s Future 10 (11). https://doi.org/10.1029/2022EF002833
- 65. Ziernicka-Wojtaszek, A., 2021. Summer drought in 2019 on Polish territory — a case study. Atmosphere 12 (11). https://doi.org/10.3390/atmos12111475
- 66. Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R.M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M.D., Maraun, D., Ramos, A.M., Ridder, N.N., Thiery, W., Vignotto, E., 2020a. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1 (7), 333-347. https://doi.org/10.1038/s43017-020-0060-z
- 67. Zscheischler, J., Van Den Hurk, B., Ward, P.J., Westra, S., 2020b. Multivariate extremes and compound events. In Climate Extremes and Their Implications for Impact and Risk Assessment. Elsevier. https://doi.org/10.1016/B978-0-12-814895-2.00004-5
- 68. Zscheischler, J., Westra, S., Van Den Hurk, B.J.J.M., Seneviratne, S.I., Ward, P.J., Pitman, A., Aghakouchak, A., Bresch, D.N., Leonard, M., Wahl, T., Zhang, X., 2018. Future climate risk from compound events. Nat. Clim. Change. 8 (6), 469-477. https://doi.org/10.1038/s41558-018-0156-3
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-edeb5e3d-6dcc-41f8-aa15-e79bef33b38b