Czasopismo
2016
|
Vol. 16, no. 4
|
717--723
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Commercially pure aluminium 1050 and aluminium alloy 5483 were processed by Severe Plastic Deformation processes, i.e. Equal Channel Angular Pressing and Hydrostatic Extrusion in various configurations. Electrical conductivity and Vicker's microhardness were measured for as-received and deformed materials. Microstructure was investigated using Focused Ion Beam Microscopy and Transmission Electron Microscopy for coarse grained and deformed materials, respectively. The Severe Plastic Deformation processes bring about a significant grain size reduction, which was accompanied by an increase in microhardness. The results have shown that the grain size reduction below 1 μm has a negligible impact on electrical properties in comparison to alloying elements, which considerably impair the electrical conductivity.
Czasopismo
Rocznik
Tom
Strony
717--723
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland, marta.lipinska@inmat.pw.edu.pl
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
Bibliografia
- [1] M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, The use of severe plastic deformation for microstructural control, Materials Science and Engineering A 324 (2002) 82–89.
- [2] R. Valiev, R. Islamgaliev, I. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103–189.
- [3] E.O. Hall, The Deformation, Ageing of mild steel: III discussion of results, Proceedings of the Physical Society Section B 64 (1951) 747.
- [4] N.J. Petch, The cleavage strength of polycrystals, Journal of the Iron and Steel Institute 174 (1953) 25–28.
- [5] N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Materialia 51 (2004) 801–806.
- [6] V.M. Segal, Materials processing by simple shear, Materials Science and Engineering A 197 (1995) 157–164.
- [7] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51 (2006) 881–981.
- [8] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Progress in Materials Science 53 (2008) 893–979.
- [9] M. Lewandowska, K.J. Kurzydlowski, Recent development in grain refinement by hydrostatic extrusion, Journal of Materials Science 43 (2008) 7299–7306.
- [10] X. Sauvage, E.V. Bobruk, M.Y. Murashkin, Y. Nasedkina, N.A. Enikeev, R.Z. Valiev, Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys, Acta Materialia 98 (2015) 355–366.
- [11] R.Z. Valiev, M. Murashkin, I. Sabirov, A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity, Scripta Materialia 76 (2014) 13–16.
- [12] E.L. Huskins, B. Cao, K.T. Ramesh, Strengthening mechanisms in an Al–Mg alloy, Materials Science and Engineering A 527 (2010) 1292–1298.
- [13] T. Wejrzanowski, R. Pielaszek, A. Opalińska, H. Matysiak, W. Łojkowski, K.J. Kurzydłowski, Quantitative methods for nanopowders characterization, Applied Surface Science 253 (2006) 204–208.
- [14] P. Bazarnik, M. Lewandowska, M. Andrzejczuk, K.J. Kurzydlowski, The strength and thermal stability of Al–5Mg alloys nano-engineered using methods of metal forming, Materials Science and Engineering A 556 (2012) 134–139.
- [15] P. Bazarnik, M. Lewandowska, K.J. Kurzydlowski, Mechanical behaviour of ultrafine grained Al–Mg alloys obtained by different processing routes, Archives of Metallurgy and Materials 57 (2012) 869–876.
- [16] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing, Acta Materialia 46 (1998) 3317–3331.
- [17] M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon, A model investigation of the shearing characteristics in equal-channel angular pressing, Materials Science and Engineering A 347 (2003) 223–230.
- [18] M. Kulczyk, J. Skiba, W. Pachla, Microstructure, Mechanical properties of AA5483 after combination of ECAP and hydrostatic extrusion SPD processes, Archives of Metallurgy and Materials 59 (2014) 6–9.
- [19] E.A. El-Danaf, M.S. Soliman, A.A. Almajid, M.M. El-Rayes, Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP, Materials Science and Engineering A 458 (2007) 226– 234.
- [20] L. Olejnik, W. Chrominski, A. Rosochowski, M. Lipinska, M. Lewandowska, Incremental ECAP as a novel tool for producing ultrafine grained aluminium plates, IOP Conference Series: Materials Science and Engineering 63 (2014) 012004.
- [21] W. Chrominski, L. Olejnik, A. Rosochowski, M. Lewandowska, Grain refinement in technically pure aluminium plates using incremental ECAP processing, Materials Science and Engineering A 636 (2015) 172–180.
- [22] Y.J. Chen, Y.C. Chai, H.J. Roven, S.S. Gireesh, Y.D. Yu, J. Hjelen, Microstructure and mechanical properties of Al–xMg alloys processed by room temperature ECAP, Materials Science and Engineering A 545 (2012) 139–147.
- [23] M. Reza Toroghinejad, F. Ashrafizadeh, R. Jamaati, On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083, Materials Science and Engineering A 561 (2013) 145–151.
- [24] M. Abdulstaar, M. Mhaede, M. Wollmann, L. Wagner, Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behaviour and corrosion fatigue of AA5083, Surface and Coatings Technology 254 (2014) 244–251.
- [25] M. Lipinska, P. Bazarnik, M. Lewandowska, The electrical conductivity of CuCrZr alloy after SPD processing, IOP Conference Series: Materials Science and Engineering 63 (2014) 012119.
- [26] P.L. Rossiter, The Electrical Resistivity of Metals and Alloys, Cambridge University Press, 1991.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-edd8bf65-6086-4f3f-bcae-3ecc72ec14f1