Czasopismo
2019
|
Vol. 52, nr 1
|
490--495
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we prove an Ozguç, Yurdakadim and Taş version of the Korovkin-type approximation by operators in the sense of the power series method. That is, we try to extend the Korovkin approximation theorems, obtained by Ozguç and Taş in 2016, and Taş and Yurdakadim in 2017, for concrete classes of Banach spaces to the class of Riesz spaces. Some applications are presented.
Czasopismo
Rocznik
Tom
Strony
490--495
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- University of Tunis, Institut préparatoire aux études d’ingenieurs de Tunis, 2 Rue jawaher lel Nehrou Monflery 1008, Tunisia, Elmiloud.chil@ipeit.rnu.tn
autor
- L.A.T.A.O. Faculty of sciences of Tunis University, ELManar Compus universitaire Elmanar, Tunisia, marwa.assili23@gmail.com
Bibliografia
- [1] Korovkin B., On convergence of linear positive operators in the space of continuous functions, Doklady Akad. Nauk SSSR (N.S.), 1953, 90, 961-964
- [2] Wolff M., On the universal Korovkin closure of subsets in vector lattices, J. Approx. Theory, 1978, 22, 243-253
- [3] Altomare F., Korovkin-type and approximation by positive linear operators, Surv. Approx. Theory, 2010, 5, 92-164
- [4] Duman O., Orhan C., An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen, 2006, 69, 33-46
- [5] Guessab A., Schmeisser G., Two Korovkin-type theorems in multivariate approximation, Banach J. Math. Anal., 2008, 2, 221-128
- [6] Atlihan O. G., Tas E., An abstract version of the Korovkin theorem via A-summation process, Acta Math. Hungar., 2015, 145, 360-368
- [7] Wisniewska H., Wojtowicz M., Approximations of the Korovkin type in Banach lattices, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM, 2015, 109(1), 125-134
- [8] Dorai A., Chil E., Wojtowicz M., Korovkin-type approximation theory in Riesz spaces, Mediterr. J. Math., 2018, 15:169
- [9] Bardaro C., Boccuto A., Dimitriou X., Mantellini I., Abstract Korovkin-type theorems in modular spaces and applications, Cent. Eur. J. Math., 2013, 11(10), 1774-1784
- [10] Ozguc I., Tas E., A Korovkin-type approximation theorem and power series method, Results Math., 2016, 69(3-4), 497-504
- [11] Pinar O. S., Fadime D., A Korovkin-type theorem for double sequences of positive linear operators via power series method, Positivity, 2018, 22, 209-218
- [12] Yurdakadim T., Abstract Korovkin theory in modular spaces in the sense of power series method, Hacet. J. Math. Stat., 2018, 47(6), 1467-1477
- [13] Tas E., Yurdakadim T., Approximation by positive linear operators in modular spaces by power series method, Positivity, 2017, 21(4), 1293-1306
- [14] Aliprantis C. D, Burkinshaw O., Positive Operators, Academic Press, Orlando, 1985
- [15] Luxemburg W. A., Zaanen A. C., Riesz Spaces I, North-Holland, Amsterdam, 1971
- [16] Boos J., Classical and Modern Methods in Summability, Oxford Univ. Press. UK, 2000
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-edc1be04-ab68-45a5-a5d1-4bef8c59b572