Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 5 | 174--186
Tytuł artykułu

Comparative Investigation of Yield and Quality of Carbon Nanotubes by Catalytic Conversion of Recycled Polypropylene and Polyethylene Plastics over Fe-Co-Mo/CaCO3 Based on Chemical Vapour Deposition

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polypropylene (PP) and polyethylene (PE) plastic waste is accumulating in the environment and the oceans at an alarming rate. The current management methods, mostly landfilling and incineration, are becoming unsustainable. In this study, thermal catalytic conversion of waste PP and PE polymers into carbon nanotubes (CNTs) using a trimetallic catalyst prepared from the nitrate salts of iron, cobalt, and molybdenum supported with calcium carbonate was reported. The yield and quality of multi-walled carbon nanotubes (MWCNTs) produced were investigated. The findings showed a high graphitic value for the CNTs obtained from PP and PE, as corroborated by the d-spacing of XRD. The ID/IG ratio of CNTS synthesized from PP and PE as carbon sources were 0.6724 and 0.9028, respectively, which showed that CNT produced from PP has more ordered graphite. The functional groups present in the produced CNTs were determined via FITR analysis. The BET and Langmuir surface areas were found to be (6.834 and 70.468 m2/g) and (6.733 and 70.347 m2/g) for CNTs obtained from PP and PE respectively. The d-spacing was computed as 0.3425 nm and 0.3442 nm for CNTs made from PP and PE. These fall within the graphite's d-spacing at 0.335 nm. The TGA showed high percentage purity of 94.71 and 94.40% for the products obtained from PP and PE, respectively. The findings showed that recycled PP and PE could be good alternative carbon sources for CNT production.
Wydawca

Rocznik
Strony
174--186
Opis fizyczny
Bibliogr. 44 poz., fig., tab.
Twórcy
  • Centre for Nanoengineering and Advanced Material, University of Johannesburg, Doornfontein Campus, 55 Beit St, Doornfontein, Johannesburg, 2028, South Africa, meetchiefonu@gmail.com
  • Centre for Nanoengineering and Advanced Material, University of Johannesburg, Doornfontein Campus, 55 Beit St, Doornfontein, Johannesburg, 2028, South Africa, olusolaolt@gmail.com
  • Department of Chemical Engineering, University of Johannesburg, Doornfontein Campus, 55 Beit St, Doornfontein, 2028, Johannesburg, South Africa, boboirien@uj.ac.za
  • Centre for Nanoengineering and Advanced Material, University of Johannesburg, Doornfontein Campus, 55 Beit St, Doornfontein, Johannesburg, 2028, South Africa, polubambi@uj.ac.za
Bibliografia
  • 1. W.U. Eze, R. Umunakwe, H.C. Obasi, M.I. Ugbaja, C.C. Uche, and I.C. Madufor, Plastics waste management: A review of pyrolysis technology, Clean Technologies and Recycling, vol. 1, pp. 50–69, 2021. doi: 10.3934/ctr.2021003.
  • 2. N. Evode, S.A. Qamar, M. Bilal, D. Barceló, and H.M.N. Iqbal, Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering, vol. 4, p. 100142, 2021. doi: https://doi. org/10.1016/j.cscee.2021.100142
  • 3. K. Li, H. Zhang, Y. Zheng, G. Yuan, Q. Jia, and S. Zhang, Catalytic Preparation of Carbon Nanotubes from Waste Polyethylene Using FeNi Bimetallic Nanocatalyst. Nanomaterials, vol. 10, no. 8, p. 1517, 2020. doi: https://doi.org/10.3390/nano10081517
  • 4. D. Kawecki, P.R.W. Scheeder, and B. Nowack, Probabilistic material flow analysis of seven commodity plastics in Europe. Environmental science & technology, vol. 52, no. 17, pp. 9874–9888, 2018. doi: https://doi.org/10.1021/acs.est.8b01513
  • 5. O.O. Ayeleru et al., Challenges of plastic waste generation and management in sub-Saharan Africa: A review. Waste Management, vol. 110, pp. 24–42, 2020. doi: https://doi.org/10.1016/j. wasman.2020.04.017
  • 6. D. Yao, Y. Zhang, P. T. Williams, H. Yang, and H. Chen, Co-production of hydrogen and carbon nanotubes from real-world waste plastics: Influence of catalyst composition and operational parameters. Applied Catalysis B: Environmental, vol. 221, pp. 584–597, 2018. doi: https://doi.org/10.1016/j. apcatb.2017.09.035.
  • 7. A. A. Aboul-Enein, H. Adel-Rahman, A.M. Haggar, and A.E. Awadallah, Simple method for synthesis of carbon nanotubes over Ni-Mo/Al2O3 catalyst via pyrolysis of polyethylene waste using a two-stage process. Fullerenes, Nanotubes and Carbon Nanostructures, vol. 25, no. 4, pp. 211–222, 2017. doi: http://dx.doi.org/10.1080/1536383X.2016.1277422.
  • 8. G. Litak, Buckling behaviour of single-walled carbon nanotubes under axial loading. Advances in Science and Technology. Research Journal, vol. 11, no. 1, pp. 208–211, 2017. doi: 10.12913/22998624/68468.
  • 9. M. Arda and M. Aydogdu, Analysis of free torsional vibration in carbon nanotubes embedded in a viscoelastic medium. Advances in Science and Technology. Research Journal, vol. 9, no. 26, pp. 28–33, 2015. doi: 10.12913/22998624/2361.
  • 10. H. U. Modekwe, M.A. Mamo, M.O. Daramola, and K. Moothi, Catalytic Performance of Calcium Titanate for Catalytic Decomposition of Waste Polypropylene to Carbon Nanotubes in a Single-Stage CVD Reactor. Catalysts, vol. 10, no. 9, p. 1030, 2020. doi: https://www.mdpi.com/2073-4344/10/9/1030#.
  • 11. A. S. Abdulkareem, I. Kariim, M.T. Bankole, J.O. Tijani, T. Abodunrin, and S. Olu, Synthesis and Characterization of Tri-metallic Fe-Co-Ni Catalyst Supported on CaCO3 for Multi-Walled Carbon Nanotubes Growth via Chemical Vapor Deposition Technique Arabian Journal for Science & Engineering (Springer Science & Business Media BV), vol. 42, no. 10, 2017. doi: 10.1007/s13369-017-2478-2.
  • 12. A. A. Ezz, M.M. Kamel, and G.R. Saad, Synthesis and characterization of nanocarbon having different morphological structures by chemical vapor deposition over Fe-Ni-Co-Mo/MgO catalyst. Journal of Saudi Chemical Society, vol. 23, no. 6, pp. 666–677, 2019. doi: https://doi.org/10.1016/j. jscs.2018.11.004.
  • 13. K. J. Kim et al., The effect of carbon nanotube diameter on the electrical, thermal, and mechanical properties of polymer composites. Carbon letters, vol. 26, pp. 95–101, 2018. doi: 10.5714/CL.2018.26.095.
  • 14. B. Arora and P. Attri, Carbon nanotubes (CNTs): a potential nanomaterial for water purification. Journal of Composites Science, vol. 4, no. 3, p. 20, 2020. doi: 10.3390/jcs4030135.
  • 15. S. He, Y. Xu, Y. Zhang, S. Bell, and C. Wu, Waste plastics recycling for producing high-value carbon nanotubes: Investigation of the influence of Manganese content in Fe-based catalysts. Journal of Hazardous Materials, vol. 402, p. 123726, 2021. doi: https://doi.org/10.1016/j.jhazmat.2020.123726.
  • 16. X. Liu, S. He, Z. Han, and C. Wu, Investigation of spherical alumina supported catalyst for carbon nanotubes production from waste polyethylene. Process Safety and Environmental Protection, vol. 146, pp. 201–207, 2021. doi: https://doi.org/10.1016/j. psep.2020.08.027.
  • 17. P. Tripathi, S. Durbach, and N.J. Coville, Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst. Nanomaterials, vol. 7, no. 10, p. 284, 201. doi: 10.3390/nano7100284.
  • 18. K. Shah et al., Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst. Journal of Environmental Management, vol. 301, p. 113791, 2022. doi: https:// doi.org/10.1016/j.jenvman.2021.113791.
  • 19. N. Kure et al., Simple microwave-assisted synthesis of carbon nanotubes using polyethylene as carbon precursor. Journal of Nanomaterials, vol. 2017, 2017. doi: https://doi.org/10.1155/2017/2474267.
  • 20. J. Song, H. Zhang, J. Wang, L. Huang, and S. Zhang, High-yield production of large aspect ratio carbon nanotubes via catalytic pyrolysis of cheap coal tar pitch. Carbon, vol. 130, pp. 701–713, 2018. doi: https://doi.org/10.1016/j.carbon.2018.01.060.
  • 21. N. Miskolczi, J. Sója, and E. Tulok, Thermo-catalytictwo-step pyrolysis of real waste plastics from end of life vehicle. Journal of Analytical and Applied Pyrolysis, vol. 128, pp. 1–12, 2017. doi: https://doi. org/10.1016/j.jaap.2017.11.008.
  • 22. R. Shoukat and M. I. Khan, Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology. Microsystem Technologies, vol. 27, no. 12, pp. 4183–4192, 2021. doi: https://doi.org/10.1007/s00542-021-05211-6.
  • 23. H. U. Modekwe, M.A. Mamo, K. Moothi, and M.O. Daramola, Synthesis of bimetallic NiMo/MgO catalyst for catalytic conversion of waste plastics (polypropylene) to carbon nanotubes (CNTs) via chemical vapour deposition method. Materials Today: Proceedings, vol. 38, pp. 549–552, 2021. doi: https://doi.org/10.1016/j.matpr.2020.02.398.
  • 24. L. M. Esteves, J.L. Smarzaro, A. Caytuero, H.A. Oliveira, and F.B. Passos, Catalyst preparation methods to reduce contaminants in a high-yield purification process of multiwalled carbon nano- tubes. Brazilian Journal of Chemical Engineering, vol. 36, pp. 1587–1600, 2020. doi: dx.doi. org/10.1590/0104-6632.20190364s2019025.
  • 25. P. Setyopratomo, P.P.D.K. Wulan, and M. Sudibandriyo, Carbon nanotubes synthesis using Fe-Co- Mo/MgO tri-metallic catalyst: study the effect of reaction temperature, reaction time and catalyst weigh. International Journal of Nanomanufacturing, vol. 16, no. 1, pp. 1–20, 2020. doi: https://dx.doi. org/10.1504/IJNM.2020.104476.
  • 26. A. A. Aboul-Enein and A.E. Awadallah, Impact of Co/ Mo ratio on the activity of CoMo/MgO catalyst for production of high-quality multi-walled carbon nanotubes from polyethylene waste. Materials Chemistry and Physics, vol. 238, p. 121879, 2019. doi: https:// doi.org/10.1016/j.matchemphys.2019.121879.
  • 27. A .A.Aboul-Enein and A.E. Awadallah, Production of nanostructure carbon materials via non-oxidative thermal degradation of real polypropylene waste plastic using La2O3 supported Ni and Ni–Cu catalysts. Polymer Degradation and Stability, vol. 167, pp. 157–169, 2019. doi: https://doi.org/10.1016/j. polymdegradstab.2019.06.015.
  • 28. S. M. Abdelbasir, K.M. McCourt, C.M. Lee, and D.C. Vanegas, Waste-derived nanoparticles: synthesis approaches, environmental applications, and sustainability considerations. Frontiers in Chemistry, vol. 8, p. 782, 2020. doi: https://doi.org/10.3389/ fchem.2020.00782.
  • 29. J. Wang, B. Shen, M. Lan, D. Kang, and C. Wu, Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics: The influence of catalyst and reaction pressure. Catalysis Today, vol. 351, pp. 50–57, 2020. doi: https://doi.org/10.1016/j. cattod.2019.01.058.
  • 30. S. U. Rather, Trimetallic catalyst synthesized multiwalled carbon nanotubes and their application for hydrogen storage. Korean Journal of Chemical Engineering, vol. 33, no. 5, pp. 1551–1556, 2016. doi: https://link.springer.com/article/10.1007/ s11814-015-0271-z.
  • 31. D. Yao, H. Yang, Q. Hu, Y. Chen, H. Chen, and P.T. Williams, Carbon nanotubes from post-consumer waste plastics: Investigations into catalyst metal and support material characteristics. Applied Catalysis B: Environmental, vol. 280, p. 119413, 2021. doi: https://doi.org/10.1016/j.apcatb.2020.119413.
  • 32. A. Karbul, M.K. Mohammadi, R.J. Yengejeh, and F. Farrokhian, Synthesis and Characterization of Trimetallic Fe-Co-V/Zeolite and Fe-Co-Mo/ Zeolite Composite Nanostructures. Materials Research, vol. 24, no. 3, p. 7, 2021. doi: https://doi. org/10.1590/1980-5373-MR-2020-0292.
  • 33. K. S. P. Karunadasa, C.H. Manoratne, H.M.T.G.A. Pitawala, and R.M.G. Rajapakse, Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of solids, vol. 134, pp. 21–28. 2019, doi: https://doi. org/10.1016/j.jpcs.2019.05.023.
  • 34. A. Aliyu, A. S. Abdulkareem, A.S. Kovo, O.K. Abubakre, J.O. Tijani, and I. Kariim, Synthesize multi walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin. Carbon Letters vol. 21, pp. 33–50, 2017. doi: https://doi.org/10.5714/ CL.2017.21.033.
  • 35. F. H. Abdulrazzak, A.F. Alkiam, and F.H. Hussein, Behavior of X-ray analysis of carbon nanotubes. In Perspective of carbon nanotubes: IntechOpen London, UK, 2019.
  • 36. H. U. Modekwe, K. Moothi, M.O. Daramola, and M. A. Mamo, Corn Cob Char as Catalyst Support for Developing Carbon Nanotubes from Waste Polypropylene Plastics: Comparison of Activation Techniques. Polymers, vol. 14, no. 14, p. 2898, 2022. doi: https://www.mdpi.com/2073-4360/14/14/2898#.
  • 37. Z. Zhao, Z. Yang, Y. Hu, J. Li, and X. Fan, Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Applied Surface science, vol. 276, pp. 476–481, 2013. doi: https:// doi.org/10.1016/j.apsusc.2013.03.119.
  • 38. E. D. Dikio, N.D. Shooto, F.T. Thema, and A.M. Farah, Raman and TGA study of carbon nanotubes synthesized over Mo/Fe catalyst on aluminium oxide, calcium carbonate and magnesium oxide support. Chemical Science Transactions, vol. 2, no. 4, pp. 1160–1173, 2013. doi: 10.7598/cst2013.519.
  • 39. S. Saconsint et al., Development of high-performance nickel-based catalysts for production of hydrogen and carbon nanotubes from biogas. Sci-entific Reports, vol. 12, no. 1, p. 15195, 2022. doi: 10.21203/rs.3.rs-1839692/v1.
  • 40. A. Buzarovska, V. Stefov, M. Najdoski, and G. Bogoeva-Gaceva, Thermal analysis of multi-walledcarbon nanotubes material obtained by catalyticpyrolysis of polyethylene. Macedonian Journal of Chemistry and Chemical Engineering, vol. 34, no. 2, pp. 373–379, 2015. doi: 10.20450/mjcce.2015.620.
  • 41. A. Mahajan, A. Kingon, A. Kukovecz, Z. Konya, and P.M. Vilarinho, Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Materials Letters, vol. 90, pp. 165-168, 2013. doi: https://doi.org/10.1016/j.matlet.2012.08.120.
  • 42. Y. Liu et al., Synthesis of porous carbon nanotubes foam composites with a high accessible surface area and tunable porosity. Journal of Materials Chemistry A, vol. 1, no. 33, pp. 9508–9516, 2013. doi: http://dx.doi.org/10.1039/C3TA10695K.
  • 43. I. A. Mohammed, M.T. Bankole, A.S. Abdulkareem, S.S. Ochigbo, A.S. Afolabi, and O.K. Abubakre, Full factorial design approach to carbon nanotubes synthesis by CVD method in argon environment. South African Journal of Chemical Engineering, vol. 24, no. 1, pp. 17–42, 2017. doi: https://doi. org/10.1016/j.sajce.2017.06.001.
  • 44. M. J. Eskandari, M.A. Asadabad, R. Tafrishi, and M. Emamalizadeh, Transmission electron microscopy characterization of different nanotubes. Inorganic and nano-metal chemistry, vol. 47, no. 2, pp. 197–201, 2017. doi: https://doi.org/10.1080/15533 174.2015.1137317
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-edc0bc96-11d4-499a-9ccc-ffbf38917d60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.