Czasopismo
2016
|
Vol. 68, nr 4
|
285--308
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A unified mathematical model of fractional magneto-thermo-viscoelasticty for isotropic perfectly conducting media involving fractional relaxation operator is given. Some essential theorems on the linear coupled and generalized theories of thermoviscoelasticity can be easily obtained. The new fractional model is applied to a halfspace subjected to two different forms of time-dependent thermal shock in, the presence of a transverse magnetic field. The Laplace transform techniques are used. Numerical computation is performed by using a numerical inversion technique and the resulting quantities are shown graphically. The effects of the fractional orders on viscoelastic material are discussed.
Czasopismo
Rocznik
Tom
Strony
285--308
Opis fizyczny
Bibliogr. 78 poz., rys., wykr.
Twórcy
autor
- Faculty of Education Department of Mathematics Alexandria University Alexandria, Egypt, maezzat2000@yahoo.com
autor
- Arab Academy for Science and Technology P.O. Box 1029 Alexandria, Egypt, aaelbary@aast.edu
Bibliografia
- 1. N. W. Tschegl, Time dependence in material properties: An overview, Mech. Time-Depend Mater., 1, 3–31, 1997.
- 2. B. Gross, Mathematical Structure of the Theories of Viscoelasticity, Hermann, Paris, 1953.
- 3. C. Atkinson, R.V. Craster, Theoretical aspects of fracture mechanics, Prog. Aerospace Sci., 31, 1–83, 1995.
- 4. K.R. Rajagopal, G. Saccomandi, On the dynamics of non-linear viscoelastic solids with material moduli that depend upon pressure, Int. J. Eng. Sci., 45, 41–54, 2007.
- 5. A. Ilioushin, B. Pobedria, Fundamentals of the mathematical theory of thermal viscoelasticity, Nauka, Moscow, 1970 [in Russian].
- 6. M. Biot, Variational principle in irreversible thermodynamics with application to viscoelasticity, Phys. Rev. 97, 1463–1469, 1955.
- 7. L. Morland, E. Lee, Stress analysis for linear viscoelastic materials with temperature variation, Trans. Soc. Rheo., 4, 233–263, 1960.
- 8. R. Tanner, Engineering Rheology, Oxford Univ. Press, Oxford, 1988.
- 9. R. Huilgol, N. Phan-Thien, Fluid Mechanics of Viscoelasticity, Elsevier, Amsterdam, 1997.
- 10. M.A. Koltunov, Creeping and Relaxation, Izd. Vishaya, Shkola, Moscow, 1976 [in Russian].
- 11. J.H. Duhamel, Second memoir, sur les phenomenes thermomechanique, J. de L’Ecole Polytech., 15, 1–57, 1837.
- 12. M. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240–253, 1956.
- 13. C. Cattaneo, Sur une forme de l’équation de la Chaleur éliminant le paradoxe d’une propagation instantaneée, CR Acad. Sci., 247, 431–433, 1958.
- 14. C. Truesdell, R.G. Muncaster, Fundamental of Maxwell’s Kinetic Theory of a Simple Monatomic Gas, Academic Press, New York, 1980.
- 15. D.E. Glass, B. Vick, Hyperbolic heat conduction with surface radiation, Int. J. Heat Mass Trans., 28, 1823–1830, 1985.
- 16. D.D. Joseph, L. Preziosi, Heat waves, Rev. Mod. Phys., 61, 41–73, 1989.
- 17. W. Dreyer, H. Struchtrup, Heat pulse experiments revisited, Contin. Mech. Thermodyn., 5, 3–50, 1993.
- 18. H. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Mech. Phys. Solid, 15, 299–309, 1967.
- 19. J. Ignaczak, M. Ostoja-Starzeweski, Thermoelasticity with Finite Wave Speeds, Oxford Univ. Press, Oxford, UK, 2009.
- 20. D.D. Joseph, L. Preziosi, Addendum to the paper: Heat waves, Rev. Mod. Phys., 62, 375–391, 1990.
- 21. J. Ignaczak, Generalized thermoelasticity and its applications, [in:] R. B. Hetnarski [Ed.], Thermal Stresses III, Elsevier, pp. 279–354, New York, 1989.
- 22. D.S. Chandrasekharaiah, Hyperbolic thermoelasticity, a review of recent literature, Appl. Mech. Rev., 51, 705–729, 1998.
- 23. R.B. Hetnarski, J. Ignaczak, Generalized thermoelasticity, J. Therm. Stress., 22, 451–476, 1999.
- 24. R.B. Hetnarski, M.R. Eslami, Thermal Stresses, Advanced Theory and Applications, Springer, New York, 2009.
- 25. R.S. Dhaliwal, H.H. Sherief, Generalized thermoelasticity for anisotropic media, Quart. Appl. Math., 38, 1–8, 1980.
- 26. M.A. Ezzat, A.S. El-Karamany, On uniqueness and reciprocity theorems for generalized thermoviscoelasticity with thermal relaxation, Can. J. Phys., 81, 823–833, 2003.
- 27. H.H. Sherief, Fundamental solution of generalized thermoelastic problem for short times, J. Therm. Stress., 9, 151–164, 1986.
- 28. A.S. El-Karamany, M.A. Ezzat, On the boundary integral formulation of thermoviscoelasticity theory, Int. J. Eng. Sci. 40, 1943–1956, 2002.
- 29. A.S. El-Karamany, M.A. Ezzat, Discontinuities in generalized thermo-viscoelasticity under four theories, J. Therm. Stress., 27, 1187–1212, 2004.
- 30. M.A. Ezzat, A.S. El-Karamany, Propagation of discontinuities in magnetothermoelastic half-space, J. Therm. Stress., 29, 331–358, 2006.
- 31. I. Müller, The coldness, a universal function in thermoelastic solids, Arch. Rat. Mech. Anal., 41, 319–332, 1971.
- 32. A.E. Green, N. Laws, On the entropy production inequality, Arch. Rat. Anal., 54, 17–53, 1972.
- 33. A. Green, K. Lindsay, Thermoelasticity, J. Elas., 2, 1–7, 1972.
- 34. E. Suhubi, Thermoelastic solids, [in:] A.C. Eringen [Ed.], Cont. Phys., Chapter 21, Vol. II, Academic Press, New York, 1975.
- 35. H.H. Sherief, Fundamental solution for thermoelasticity with two relaxation times, Int. J. Eng. Sci., 30, 861–870, 1992.
- 36. M.A. Ezzat, Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions, Int. J. Eng. Sci., 33, 2011–2020, 1995.
- 37. M.A. Ezzat, A.S. El-Karamany, The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci. 40, 1275–1284, 2002.
- 38. A.S. El-Karamany, M.A. Ezzat, Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times, Appl. Math. Comput., 151, 347–362, 2004.
- 39. S.K. Roychoudhuri, S. Mukhopadhyay, Effect of rotation and relaxation times on plane waves in generalized thermo-visco-elasticity, Int. J. Math. Math. Sci., 23, 497–505, 2000.
- 40. M.A. Ezzat, The relaxation effects of the volume properties of electrically conducting viscoelastic material, Mat. Sci. Eng. B, 130, 11–23, 2006.
- 41. M.A. Ezzat, M.I. Othman, K.A. Helmy, A problem of a micropolar magnetohydrodynamic boundary-layer flow, Can. J. Phys., 77, 813–827, 1999.
- 42. D.Y. Tzou, A unified filed approach for heat conduction from macro to macroscales, J. Heat Transfer, 117, 8–16, 1995.
- 43. R. Quintanilla, R. Racke, A note on stability in dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49, 1209–1213, 2006.
- 44. C.O. Horgan, R. Quintanilla, Spatial behaviour of solutions of the dual-phase-lag heat equation, Math. Meth. Appl. Sci., 28, 43–57, 2005.
- 45. D. Jou, M. Criado-Sancho, Thermodynamic stability and temperature overshooting in dual-phase-lag heat transfer, Phys. Letter A, 248, 172–178, 1998.
- 46. A.S. El-Karamany, M.A. Ezzat, On the dual-phase-lag thermoelasticity theory, Meccanica, 49, 79–89, 2014.
- 47. I.A. Abbas, A.M. Zenkour, Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating, J. Comput. Theor. NanoSci., 11, 1–4, 2014.
- 48. H.-L. Lee, W.-L. Chen, W.-J. Chang, M.-I. Char, Y.-C. Yang, Numerical analysis of dual-phase-lag heat transfer for a moving finite medium subjected to laser heat source, Appl. Math. Model., 40, 4700–4711, 2016.
- 49. V. Kiriyakova, Generalized fractional calculus and applications, [in:] Pitman Research Notes in Mathematics Series, vol. 301, Longman-Wiley, New York, 1994.
- 50. R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27, 201–210, 1983.
- 51. K. Adolfsson, M. Enelund, P. Olsson, On the fractional order model of viscoelasticity, Mech. Time-Depend. Mat., 9, 15–34, 2005.
- 52. M. Caputo, Vibrations on an infinite viscoelastic layer with a dissipative memory, J. Acous. Soc. Am., 56, 897–904, 1974.
- 53. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- 54. R. Kimmich, Strange kinetics, porous media, and NMR, J. Chem. Phys. 284, 243–285, 2002.
- 55. F. Mainardi, R. Gorenflo, On Mittag–Leffler-type function in fractional evolution processes, J. Comput. Appl. Math., 118, 283–299, 2000.
- 56. Y. Fujira, Integrodifferential equation which interpolates the heat equation and the wave equation , J. Math., 27, 309–321, Osaka, 1990.
- 57. Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stress, J. Therm. Stress., 28, 83–102, 2005.
- 58. H.H. Sherief, A. El-Said, A. Abd El-Latief, Fractional order theory of thermoelasticity, Int. J. Solid Struct., 47, 269–275, 2010.
- 59. H. Youssef, Theory of fractional order generalized thermoelasticity, J. Heat Transf., 132, 1–7, 2010.
- 60. M.A. Ezzat, Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer, Physica B, 406, 30–35, 2011.
- 61. M.A. Ezzat, Theory of fractional order in generalized thermoelectric MHD, Appl. Math. Model., 35, 4965–4978, 2011.
- 62. M.A. Ezzat, Thermoelectric MHD with modified Fourier’s law, Int. J. Therm. Sci., 50, 449–455, 2011.
- 63. A.S. El-Karamany, M.A. Ezzat, On fractional thermoelastisity, Math. Mech. Solids, 16, 334–346, 2011.
- 64. A.S. El-Karamany, M.A. Ezzat, Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity, J. Therm. Stress., 34, 264–284, 2011.
- 65. M.A. Ezzat, A.S. El-Karamany, Fractional order heat conduction law in magnetothermoelasticity involving two temperatures, Zeitschrift für Angewandte Mathematik und Physik – ZAMP, 62, 937–952, 2011.
- 66. M.A. Ezzat, A.S. El-Karamany, Theory of fractional order in electro-thermoelasticity, Euro. J. Mech. A Solid, 30, 491–500, 2011.
- 67. M.A. Ezzat, A.A. El-Bary, MHD free convection flow with fractional heat conduction law, MHD, 48, 587–606, 2012.
- 68. M.A. Ezzat, N.S. Al-Sowayan, Z.I. Al-Muhaiameed, Fractional modelling of Pennes’ bioheat transfer equation, Heat Mass Transfer, 50, 907–914, 2012.
- 69. M.A. Ezzat, A.S. El-Karamany, M. Fayik, Fractional ultrafast laser-induced thermoelastic behavior in metal films, J. Therm. Stress., 35, 637–651, 2012.
- 70. M.A. Ezzat, A.S. El-Karamany, S.M. Ezzat, Two-temperature theory in magnetothermoelasticity with fractional order dual-phase-lag heat transfer, Nuc. Eng. Design, 252, 267–277, 2012.
- 71. F. Hamza, M. Abdou, A.M. Abd El-Latief, Generalized fractional thermoelasticity associated with two relaxation times, J. Therm. Stress., 37, 1080–1098, 2014.
- 72. M.A. Ezzat, A.S. El-Karamany, Fractional thermoelectric viscoelastic materials, J. Appl. Poly. Sci., 124, 2187–2199, 2012.
- 73. M.A. Ezzat, A.S. El-Karamany, A.A. El-Bary, On thermo-viscoelasticity with variable thermal conductivity and fractional-order heat transfer, Int. J. Thermo. Phys., 36, 1684–1697, 2015.
- 74. S. Tumanski, Nondestructive testing of the stress effects in electrical steel by magnetovision method, [in:] International symposium on non-linear electromagnetic systems, ISEM ’99 Conference Proceedings, 102, Pavia, Italy, May 10, 1999.
- 75. L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, 47, 16631–16634, 1993.
- 76. G. Honig, U. Hirdes, A method for the numerical inversion of the Laplace transform, J. Comput. Appl. Math., 10, 113–132, 1984.
- 77. M.A. Ezzat, A.S. El-Karamany, A.A. El-Bary, Generalized thermo-viscoelasticity with memory-dependent derivatives, Int. J. Mech. Sci., 89, 470–475, 2014.
- 78. M.A. Ezzat, A.A. El-Bary, Thermoelectric MHD with memory-dependent derivative heat transfer, Int. Comm. Heat Mass Transf., 75, 270–281, 2016.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-edbd682f-53f4-4e49-af55-932c9f16cfff