Warianty tytułu
Proces Poissona–XLindleya
Języki publikacji
Abstrakty
Due to their advantages, non-homogeneous Poisson processes have so far been used extensively in a variety of practical applications. They do, however, also have important application-related limits. A novel counting process model named the Poisson–XLindley Process was created to get around these restrictions. We shall demonstrate that this new model lacks such constraints. These fundamental stochastic properties of the process are derived. Additionally, the dependence structure is examined along with the new idea of positively dependent increments. Generic versions of several of the features derived in this article will be offered. This is an innovative concept related to counting processes, which allows the probability function to be described explicitly. It is one of its major contributions
Niejednorodne procesy Poissona są szeroko stosowane w modelowaniu chociaż mają istotne ograniczenia jesli chcemy uzyskać wysoką zgodność modelu z zjawiskiem. W celu usunięcia tych problemów wprowadzamy zmodyfikowany opis procesu liczącego, nazwany Procesem Poissona XLindleya. W pracy pokazujemy przełamanie istotnych ograniczeń niejednorodnego procesu Poissona przez nowy model. Wyprowadzono podstawowe właściwości probabilistyczne tego procesu, badana jest równiez struktura zależności przyrostów z wykorzystaniem idei przyrostów dodatnio zależnych. W pracy pokazano ogólną wersję funkcjonałów od tego procesu. Ta innowacyjna koncepcja procesu liczącego, pozwalająca na jawny formuły opisujące rozkłady prawdopodobieństwa, jest jednym z jej głównych walorów pracy.
Czasopismo
Rocznik
Tom
Strony
273--289
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Badji Mokhtar-Annaba University Numerical analysis, Optimization and Statistics Laboratory, 23000, Annaba- Algeria, amine.sakri@essg-annaba.dz
autor
- Higher Normal School of Technological Education Skikda, Algeria, f_seghier@yahoo.fr
autor
- Imam Abdulrahman Bin Faisal University Dammam, Eastern, Saudi Arabia, vrrangan@iau.edu.sa
autor
- Badji Mokhtar-Annaba University Department of Mathematics, Science Faculty, 2300, Annaba-Algeria, halimzeghdoudi77@gmail.com
Bibliografia
- [1] M. Ahsan-ul Haq, A. Al-Bossly, M. El-Morshedy, and M. S. Eliwa. Poisson XLindley Distribution for Count Data: Statistical and Reliability Properties with Estimation Techniques and Inference. Computational Intelligence and Neuroscience, 2022:1–16, 2022.
- [2] V. S. Barbu and N. Limnios. Semi-Markov chains and hidden semi-Markov models toward applications. Their use in reliability and DNA analysis., volume 191 of Lect. Notes Stat. New York, NY: Springer, 2008.
- [3] J. H. Cha. Poisson Lindley process and its main properties. Statist. Probab. Lett., 152:74–81, 2019.
- [4] J. H. Cha and M. Finkelstein. On a terminating shock process with independent wear increments. J. Appl. Probab., 46(2):353–362, 2009.
- [5] J. H. Cha and M. Finkelstein. Stochastic intensity for minimal repairs in heterogeneous populations. J. Appl. Probab., 48(3):868–876, 2011.
- [6] J. H. Cha and M. Finkelstein. Justifying the Gompertz curve of mortality via the generalized Polya process of shocks. Theor. Popul. Biol., 109:54–62, 2016.
- [7] J. H. Cha and M. Finkelstein. New shock models based on the generalized Polya process. Eur. J. Oper. Res., 251(1):135–141, 2016.
- [8] J. H. Cha and S. Mercier. Poisson generalized gamma process and its properties. Stochastics, 93(8):1123–1140, 2021.
- [9] S. Chouia and H. Zeghdoudi. The XLindley Distribution: Properties and Application. Journal of Statistical Theory and Applications, 20(2):318, 2021.
- [10] D. R. Cox. Renewal theory. Methuen’s Monogr. Appl. Probab. Stat. London: Methuen & Co., 1962.
- [11] M. Ghitany, B. Atieh, and S. Nadarajah. Lindley distribution and its application. Mathematics and Computers in Simulation, 78(4):493–506, 2008.
- [12] R. Grine and H. Zeghdoudi. On Poisson Quasi-Lindley distribution and its applications. Journal of Modern Applied Statistical Methods, 16(2):403–417, 11 2017.
- [13] E. P. Kao. An Introduction to Stochastic Processes. Dover Pubn Inc., 2020.
- [14] N. Limnios and G. Oprişan. Semi-Markov processes and reliability. Stat. Ind. Technol. Basel: Birkhäuser, 2001.
- [15] S. R. The discrete Poisson-Amarendra. International Journal of Statistical Distributions and Applications, 2(2):14–21, 2016.
- [16] S. R. The discrete Poisson-Garima distribution. Biometrics & Biostatistics International Journal, 5(2):48–53, 2017.
- [17] M. Sankaran. 275. note: The Discrete Poisson-Lindley distribution. Biometrics, 26(1):145–149, 1970.
- [18] F. Z. Seghier, H. Zeghdoudi, and V. Raman. A Novel Discrete Distribution: Properties and Application Using Nipah Virus Infection Data Set. European Journal of Statistics, 3:3, 2022.
- [19] M. Shaked and J. G. Shanthikumar. Stochastic orders. Springer Series in Statistics. Springer, New York, 2007.
- [20] R. Shanker and F. Hagos. On Poisson-Sujatha distribution and its applications to model count data from biological sciences. Biometrics & Biostatistics International Journal, 3(4):1–7, 2016.
- [21] H. Zeghdoudi and S. Nedjar. A Poisson pseudo Lindley distribution and its application. Journal of Probability and Statistical Science, 15(1):19–28, 2017.
- [22] H. Zeghdoudi and S. Nedjar. New compound Poisson distribution: properties, inflated distribution and applications. International Journal of Agricultural and Statistics Sciences, 16(2):519–526, 12 2020.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ed9e0da0-0437-4aaa-ba99-44faad7f7244