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ABSTRACT: 
In this paper the derivation process of motion equations and boundary conditions for a slender mechanical 
system on the basis of Hamilton’s principle is presented. In order to apply the Hamilton’s principle, first of all 
it is necessary to define appropriate general variables that describe the motion of the considered system.  
In the case of slender mechanical systems, natural coordinates are usually used, which are well suited to the 
system geometry and its motional characteristics. Based on Hamilton's principle, an appropriate action func-
tional is constructed, which is the Lagrangian integral covering the appropriate general variables and time. 
The Lagrangian describes the well-known difference between the kinetic and potential energy of a system.  
A step by step derivation of a motion equation and supplementary natural boundary conditions in regard to 
an example of a slender clamped-free column subjected to Euler’s load is discussed. The obtained equation 
with a set of geometrical and natural boundary conditions gives the possibility to thoroughly analyse both 
analytically or numerically system dynamics and/or static response. Despite that the discussed method  
is time consuming and requires advanced mathematical techniques, it makes it possible to obtain exact or  
approximate motion equations even for complex problems, what can be difficult or even impossible to achieve 
using other known methods. 
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1. Introduction 

Slender mechanical structures, characterized by their high aspect ratio, are ubiquitous in  
various fields of engineering. Whether they are tall buildings, long-span bridges, slender towers, 
or slender machine components, these structures are subjected to a wide range of external and 
internal forces that can induce instability and generate vibrations. The consequences of instability 
and excessive vibrations can be catastrophic, leading to structural failures, reduced performance, 
increased maintenance costs and compromised safety. Consequently, engineers and researchers 
have devoted considerable efforts to comprehending the complex dynamics of slender structures 
and have developed innovative solutions to enhance their stability and mitigate vibrations.  
The derivation of motion equations typically involves applying principles of physics, such as  
Newton’s laws of motion, Lagrange’s equations, variational methods, Hamilton’s principle,  
numerical methods (FEM) etc. to analyse and describe the dynamic behaviour of studied system.  

Pedersen and Pedersen [1] discussed a step by step derivation of motion equations for a flexible 
mechanical system using the principle of virtual work, Newton’s second law and the law of angular 
momentum, where inertia is treated as a force. An example of a rigid body with a circular beam 
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element is investigated, where the coordinate system is located at the centre of mass and away 
of its centre. Vassiliou and Makris [2] investigated the dynamic response of a vertically restrained 
rocking column with an elastic tendon passing through its centreline. A variational formulation 
is employed and the direct approach of a nonlinear motion equation derivation is exhibited. 
Kounadis [3] demonstrated a derivation of coupled differential equations establishing the gov-
erning motion equation for a restrained Timoshenko beam subjected to uniformly distributed 
compressive follower force using the virtual work and Hamilton’s principle. Moreover, it is stated 
that one gets a different set of equations of motion when a free body diagram with sides not  
perpendicular to the deflected axis of the beam is considered. The Hamilton’s principle has been 
used in the formulation and derivation of equations describing free vibrations and the stability 
of a geometrically nonlinear slender column subjected to a follower force directed towards the 
positive pole in [4]. The authors verified obtained numerical results with experimental results 
showing good agreement. Sokół [5] derived equations of motion and solved them studying  
the stability, free vibrations and load capacity of a nonlinear column with a crack simulated by  
a rotational spring element. Lagrange multiplier formulation has been employed to find the  
coupled large displacement-small deformation equations of motion in [6]. A thorough derivation 
of motion equations and boundary conditions using various methods and principles has been 
widely described in [6-9]. Nowadays, the Finite Element Method (FEM) is frequently employed 
to formulate and numerically solve high complexity problems giving the opportunity to thor-
oughly analyse static/dynamic response. Exemplary FEM based analyses for studying dynamic 
response in various civil engineering structures can be found in [10-12].  

In this paper, we delve into the world of slender mechanical structures, exploring the funda-
mental concepts of deriving equations regarding static and dynamic system response on the basis 
of Hamilton’s principle. Challenges posed by these phenomena, the mathematical methods and 
techniques used to derive and solve discussed equations are emphasized. Through the study of  
a simple case regarding a slender clamped-free column subjected to an axial compressive load, 
the aim is to shed a light on the cutting-edge approach of deriving motion equation giving the 
possibility of reliable examination of stability and vibration frequency in slender mechanical systems. 

2. Structural model 

For the exemplary derivation of a motion equation using Hamilton’s principle, a slender  
column with clamped-free boundary conditions was adopted. On the free end an axial compres-
sive force P was applied, which was expected to buckle the system out of plane and shortens the 
column by Δ as shown in Figure 1. Before the load was applied, the column was assumed to be 
perfectly straight and initially unstressed – any geometrical imperfections and material nonline-
arities were neglected. Moreover, it was assumed that the column cross-sectional dimensions are 
small compared to its length, the cross-section was uniform along the column’s length, the column 
had experienced little in the way of deformations and the material behaved linearly within  
the elastic range. The described key assumptions classified the problem into Euler-Bernoulli 
beam theory, where rotational bending effects and shear deformations are completely neglected. 
 

 
Fig. 1. The adopted clamped-free column subjected to the Euler’s load for the derivation of equations of motion 
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3. Derivation of equations of motion 

In this section the derivation of equations of motion and natural boundary conditions for the 
clamped-free column shown in Figure 1 is presented on the basis of Hamilton’s principle, taking 
into account Lagrangian integration and variational calculus techniques. The Hamilton’s principle 
is the fundamental variational method used in mechanics – it states that from all possible move-
ments being consistent with constraints of an analysed system, only that movement is realized 
for which the integral is:  

´ U .q % 1 ( ;µ0��Z�
Z� 
 0 (1)

where δ stands as variational operator, T and V denotes kinetic and potential energy of the system, 
respectively; Le – work of external force on the free column’s end. 

First of all, one needs to define all the forces involved (kinetic energy, potential energy and 
the work of external force) in regard to the analysed system. Taking into account that the cross- 
-section of the analysed column is uniform along its length, the kinetic energy can be written as: 

q 
 12 ¶N U ·¸¹.�,  �0¸� »'�
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where ¶ denotes the material density, N is the cross-section area, ¹ is the transversal displace-
ment, ; is the column length and � refers to time. 

The total potential energy stored in the system due to the forced bending resulting from  
compressive force 4 is: 

1 
 12 U u.�, �0 ⋅ ¸'¹.�, �0¸�'�
K �� 
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where: u.�, �0 
 	¼¹��.�, �0, 	 denotes the column’s Young’s moduli and ¼ – the cross-section 
moment of inertia and the Roman numerals defines the order of the derivative with respect  
to space �. 

The work of the external force at the column’s free end can be expressed as: 

;µ 
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where Δ denotes the displacement, being the difference in column length between the undeformed 
and deformed state.  

As a consecutive step, according to Eq. (1) one has to perform the operation of variation and 
integration by parts of the given forces (2)-(4). By taking advantage of integration commutativity 
with respect to the time variable t and space coordinate x and the commutativity in calculating 
variation, the step by step solution to Eq. (2) is: 

´q 
 12 ¶N U ¸¹.�,  �0¸� ⋅ 2´ ¸¹.�,  �0¸� ��Z�
Z� ⇒ ¶N U ¸¹.�,  �0¸� ⋅ ¸v´¹.�,  �0w¸� ��Z�

Z� ⇒ (5a)
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In the Eq. (5b) the first member is equal to zero, since ´¹.�, �0 for � 
 �$ and � 
 �' is equal  
zero. Hence, the expression (5b), keeping in mind mentioned integration commutativity, may be  
rewritten as: 
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The step by step solution to get the variation of potential energy from Eq. (2) is as follows: 
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The variation of external force work at the free column’s end from Eq. (4) is: 
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After substituting the variations of energy terms given by Eqs. (5c), (6d) and (7b) into Eq. (1) 
and performing minor simplifications, the following expression is obtained: 
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Finally the equation of motion for the system is obtained. If only all the members containing 
the negative integral from 0 to ; from the variation of transverse displacements ¹.�, �0 are  
selected: 

% U ´¹.�, �0�
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The next step is to pick all the members standing at the rest respective variations, which  
leads to obtaining the natural boundary conditions:  
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In fact, the derived boundary conditions in Eqs. (10)-(13) correspond to the arbitrary column 
having both ends free. At this point it should be remembered that geometrical boundary condi-
tions originating from adopted support or supports in the system cancels or extends certain  
derived natural boundary conditions. Having in mind that the column from the Figure 1 has 
clamped support at x = 0, for which the transversal displacements and angle of rotation is equal 
to zero: 

¹.�,  �0|Ç-K 
 ¸¹.�,  �0¸� ÂÇ-K 
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and introducing the conditions from Eqs. (14a,b) into Eq. (8) one gets that the boundary condition 
from Eq. (10) and (12) are canceled and must be replaced with the geometrical boundary condi-
tion Eq. (14a,b) resulting from adopted support. Finally, boundary conditions for the column  
presented in Figure 1 are described with Eqs. (11), (13) and (14a,b).  

In order to solve the problem of stability and vibrations, the space x and time t variable needs 
to be separated from the transversal displacements ¹.�, �0 enclosed in equation of motion (9) 
and boundary conditions (11), (13) and (14a,b) according to the following formula: 

 ¹.�,  �0 
 �.�0 ⋅ q.�0 (15) 

where �.�0 is the displacement function dependent only on the space � variable and the q.�0  
in the case of harmonic vibrations have to satisfy the equation: �'q.�0��' ( 3'q.�0 
 0 (16)

The solution to the boundary problem is independent of initial conditions, thus the form of the q.�0 function can be arbitrarily adopted as: 

 q.�0 
 mb/.3�0  or  q.�0 
 Czm. 3�0 (17a, b) 

After the separation of space and time variables in both: equation of motion and boundary 
conditions, it becomes possible to analytically or numerically solve the problem of stability and 
vibrations of a slender mechanical system.  

4. Conclusion 

In this paper a step by step derivation of an equation of motion and natural boundary condi-
tions for a slender column using Hamilton’s principle has been presented. It is shown that at the 
beginning of the derivation process, the kinetic and potential energy of the system as well as work 
of external forces should have been defined. Afterwards, it is necessary to perform variational 
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operations and integration by parts in regard to defined energies. By introducing these variations 
into the governing Hamilton’s principle equation and extracting the members standing at the  
appropriate variations, one gets the equations of motion of the system and set of supplementary 
natural boundary conditions. Despite that the presented solution of the deriving motion equa-
tions can be time consuming and requires advanced mathematical techniques, it does make it 
possible to obtain equations of motion even for high complexity mechanical systems, which at 
the same time may be difficult or even impossible using different known methods. 
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Wykorzystanie zasady Hamiltona przy wyprowadzaniu równań ruchu 
oraz naturalnych warunków brzegowych w odniesieniu do smukłego 

jednogałęziowego słupa poddanego obciążeniu Eulera 

STRESZCZENIE: 
Przedstawiono proces wyprowadzania równań ruchu i naturalnych warunków brzegowych smukłego układu 
mechanicznego na podstawie zasady Hamiltona. Aby zastosować zasadę Hamiltona, należy przede wszystkim 
zdefiniować odpowiednie zmienne ogólne opisujące ruch rozpatrywanego układu. W przypadku smukłych 
układów mechanicznych stosuje się zwykle tzw. współrzędne naturalne, które są dobrze dopasowane do geo-
metrii układu i jego charakterystyk ruchu. Wykorzystując zasadę Hamiltona, konstruuje się odpowiedni funk-
cjonał ruchu, którym jest całka Lagrange’a smukłego układu po odpowiednich zmiennych ogólnych i czasie. 
Lagranżjan opisuje dobrze znaną różnicę między energią kinetyczną i potencjalną układu. W pracy przedsta-
wiono proces krok po kroku wyprowadzania równania ruchu i uzupełniających naturalnych warunków brze-
gowych w odniesieniu do smukłego słupa o jednym końcu utwierdzonym, a drugim wolnym, który to pod-
dany jest obciążeniu Eulera. Otrzymane równanie wraz ze zbiorem geometrycznych i naturalnych warunków 
brzegowych daje możliwość dokładnej analizy analitycznej lub numerycznej odpowiedzi dynamicznej i/lub 
statycznej układu. Pomimo tego, że omawiana metoda jest czasochłonna i wymaga zaawansowanych technik 
matematycznych, pozwala ona na uzyskanie dokładnych lub przybliżonych równań ruchu nawet dla złożo-
nych problemów, co przy innych znanych metodach może być trudne lub wręcz niemożliwe do osiągnięcia.  
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