Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 2 | 228--235
Tytuł artykułu

Application of laser power diode on leather cutting and optimization for better environmental quality measures

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since the leather materials are used in various industries such as shoes, fashion, furniture and automotive industries, it is essential to introduce laser technology on cutting leathers with intricate geometries under better environmental conditions. In this investigation, an effort was made to analyze the effects of laser power diode on environmental measures such as carbonization, striations and dross formation in leather cutting. It was attempted to compute the optimal factors using TGRA methodology. It was inferred that laser power diode cutting process can eliminate the striations and dross formation on leather cutting due to elimination of mechanical impact energy. Laser power diode can reduce the carbonization effect on leather cutting owing to the lower and concentrated energy. The optimal process parameters combination of laser power diode based leather cutting process was found with tolerance of 4.6%. Standoff-distance highly influences on determining the lower carbonization region and kerf width in laser power diode based leather cutting process.
Słowa kluczowe
Wydawca

Rocznik
Strony
228--235
Opis fizyczny
Bibliogr. 22 poz., fot., rys.
Twórcy
autor
  • Department of Mechatronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India
  • Department of Mechatronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai,Tamil Nadu 603203, India, muthu1060@gmail.com
Bibliografia
  • [1] Ariram N, Madhan B. Development of bio-acceptable leather using bagasse. J Clean Prod. 2020;250:119441. https:// doi. org/ 10. 1016/j. jclep ro. 2019. 119441.
  • [2] Stepanov A, Manninen M, Parnanen I, Hirvimaki M, Salminen A. Laser cutting of leather: tool for industry or designers. Phy Proced. 2013;78:157–62. https:// doi. org/ 10. 1016/j. phpro. 2015. 11. 028.
  • [3] Huo J, Liu S, Wang Y, Muthuramalingam T, Pi VN. Influence of process factors on surface measures on electrical discharge machined stainless steel using TOPSIS. Mater Res Express. 2019;6:086507. https:// doi. org/ 10. 1088/ 2053- 1591/ ab1ae0.
  • [4] Kim IW, Lee CM. A study on the machining characteristics of specimens with spherical shape using laser-assisted machining. Appl Therm Eng. 2016;100:636–45. https:// doi. org/ 10. 1016/j. applt herma leng. 2016. 02. 005.
  • [5] Li M, Gan G, Zhang Y, Yang X. Thermal damage of CFRP laminate in fiber laser cutting process and its impact on the mechanical behavior and strain distribution. Arch Civil Mech Eng. 2019;19:1511–22. https:// doi. org/ 10. 1016/j. acme. 2019. 08. 005.
  • [6] Muthuramalingam T, Akash R, Krishnan S, Phan NH, Pi VN, Elsheikh AH. Surface quality measures analysis and optimization on machining titanium alloy using CO2 based Laser beam drilling process. J Manuf Process. 2021;62:1–6. https:// doi. org/ 10. 1016/j. jmapro. 2020. 12. 008.
  • [7] Ayed Y, Germain G, Salem WB, Hamdi H. Experimental and numerical study of laser assisted machining of Ti-6Al-4V titanium alloy. Finite Elem Anal Des. 2014;92:72–9. https:// doi. org/ 10. 1016/j. finel. 2014. 08. 006.
  • [8] Caiazzo F, Curcio F, Daurelio G, Minutolo FMC. Laser cutting of different polymeric plastics (PE, PP and PC) by a CO2 laser beam. J Mater Process Technol. 2015;159:279–85. https:// doi. org/ 10. 1016/j. jmatp rotec. 2004. 02. 019.
  • [9] Elsheikh AH, Deng Wu, Showai EA. Improving laser cutting quality of polymethylmethacrylate sheet: experimental investigationand optimization. J Mater Res Technol. 2020;9:1325–39. https:// doi. org/ 10. 1016/j. jmrt. 2019. 11. 059.
  • [10] Wu DH, Zah CE, Liu X. Thermal design for the package of high-power single-emitter laser diodes. Opt Laser Technol. 2020;129:106266. https:// doi. org/ 10. 1016/j. optla stec. 2020. 106266.
  • [11] Moradi M, Arabi H, Shamsborhan M. Multi-objective optimization of high power diode laser surface hardening process of AISI 410 by means of RSM and desirability approach. Optix. 2020;202:163619. https:// doi. org/ 10. 1016/j. ijleo. 2019. 163619.
  • [12] Muthuramalingam T, Moiduddin K, Akash R, Krishnan S, Mian SH, Ameen W, Alkhalefah H. Influence of process parameters on dimensional accuracy of machined titanium (Ti-6Al-4V) alloy in Laser Beam Machining Process. Opt Laser Technol. 2020;132:106494. https:// doi. org/ 10. 1016/j. optla stec. 2020. 106494.
  • [13] Ding H, Wang Z, Guo Y. Multi-objective optimization of fiber laser cutting based on generalized regression neural network and non-dominated sorting genetic algorithm. Infrared Phys Technol. 2020;108:103337. https:// doi. org/ 10. 1016/j. infra red. 2020. 103337.
  • [14] Vasanth S, Muthuramalingam T. A study on machinability of leather using CO2-based laser beam machining process. In: Advances in manufacturing processes lecture notes in mechanical engineering. Singapore: Springer; 2019. p. 239–44.
  • [15] Lee J, Hong J, Jang D, Park KY. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. J Environ Manag. 2019;247:115–20. https:// doi. org/ 10. 1016/j. jenvm an. 2019. 06. 067.
  • [16] Muthuramalingam T. Effect of diluted dielectric medium on spark energy in green EDM process using TGRA approach. J Clean Prod. 2019;238:117894. https:// doi. org/ 10. 1016/j. jclep ro. 2019. 117894.
  • [17] Lin X, Wang P, Zhang Y, Ning Y, Zhu H. Theoretical and experimental aspects of laser cutting using direct diode laser source based on multi-wavelength multiplexing. Opt Laser Technol. 2019;114:66–71. https:// doi. org/ 10. 1016/j. optla stec. 2019. 01. 022.
  • [18] Nasim H, Jamil Y. Diode lasers: from laboratory to industry. Opt Laser Technol. 2014;56:211–22. https:// doi. org/ 10. 1016/j. optlastec. 2013. 08. 012.
  • [19] Sakthivel G, Saravanakumar D, Muthuramalingam T. Application of failure mode and effects analysis in manufacturing industry-an integrated approach with FAHP-FUZZY TOPSIS and FAHP-FUZZY VIKOR. Int J Prod Qual Manag. 2018;24:398–423. https:// doi. org/ 10. 1504/ IJPQM. 2018. 092984.
  • [20] Muthuramalingam T. Measuring the influence of discharge energy on white layer thickness in electrical discharge machining process. Measurement. 2019;131:694–700. https:// doi. org/ 10. 1016/j. measurement. 2018. 09. 038.
  • [21] Muthuramalingam T, Ramamurthy A, Moiduddin K, Alkindi M, Ramalingam S, Alghamdi O. Enhancing the surface quality of micro titanium alloy specimen in WEDM process by adopting TGRA-based optimization. Mater. 2020;13:1440. https:// doi. org/ 10. 3390/ ma130 61440.
  • [22] Geethapriyan T, Kalaichelvan K, Muthuramalingam T, Rajadurai A. Performance analysis of process parameters on machining α-β titanium alloy in electrochemical micromachining process. Proc Inst Mech Eng B. 2018;232:1577–89. https:// doi. org/ 10. 1177/ 09544 05416 673103.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ed7d01f0-605a-4b62-82f0-9e863a9cebd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.