Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 24, No. 4 | 196--208
Tytuł artykułu

Influence of a thin metal layer on a beam propagation in a biconical optical fibre taper

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of a simulation of the plasmon effect achieved between a thin precious metal layer and a biconical optical fibre taper, manufactured on a standard single mode fibre. Gold, silver and titanium were used as a metal which fulfilled a cladding function for a small diameter structure. For simulation Mode Solution software was used on which modal and frequency analyses of a wavelength were provided in the range of 800–1700 nm. A displacement of a plasmon pick in dependence of thickness of a deposited precious layer for the highest plasmon effects was observed.
Wydawca

Rocznik
Strony
196--208
Opis fizyczny
Bibliogr. 37 poz., wykr.
Twórcy
  • Institute of Applied Physics, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland, kstasiewicz@wat.edu.pl
autor
  • Institute of Applied Physics, Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. K. Jędrzejewski, “Biconical fused taper - a universal fiber devices technology”, Opto-Electr. Rev. 8, 153-159 (2000).
  • 2. K. Stasiewicz and L.R. Jaroszewicz, “Automatic set-up for advanced optical fiber elements manufacturing”, Proc. SPIE 5952, 233–239 (2005).
  • 3. T.A. Birks and Y.W. Li, “The shape of fibre tapers”, J. Light-wave Technol. 10, 432–438 (1992).
  • 4. M. Ahmad and L.L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers”, Biosen. Bioelectron. 20, 1312–1319 (2005).
  • 5. A. Kieżun, L.R. Jaroszewicz, and A. Świłło, “In-line fiber-optic biconical polarizer”, Opt. Appl. 29, 163–169 (1999).
  • 6. C.M. McAtamney, et.al “Reproducible methods for fabrication fused biconical taper couplers using a CO2 laser based process”, Proc. 3rd Int. WLT-Conference on laser, 1–5 (2005).
  • 7. G. Humbert, W.J. Wadsworth, S.G. Leon-Saval, J.C. Knight, T.A. Birks, and P.St.J. Russel, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibres”,Opt. Express 14, 1596–1602 (2006).
  • 8. L. Zhang, J. Lou, and L. Tong, “Micro/nanofiber optical sensors”, Photonic Sensor 1, 31–42 (2011).
  • 9. S. Zhu, F. Pang, and T. Wang, “Single-mode tapered optical fibre for temperature sensor based on multimode interference”, Opt. Sensor Biophotonics 8311, 1–6 (2011).
  • 10. K.A. Stasiewicz, R. Krajewski, L.R. Jaroszewicz, M. Kujawińska, and R. Świłło, “Influence of tapering process on changes of optical fibre refractive index distribution along a structure”, Opt. Electron. Rev 10, 102–109 (2010).
  • 11. R.K. Verma, A.K. Sharma, and B.D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles”, Opt. Commun. 281, 1486–1491 (2008).
  • 12. S. Kumar, G. Sharma, and V. Singh, “Sensitivity of tapered optical fiber surface plasmon resonance sensors”, Opt. Fiber Technol. 20, 333–335 (2014).
  • 13. B.D. Gupta and R.K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications”, J. Sensors, Article ID 979761, 1–12 (2009).
  • 14. A. González-Cano, M.-C. Navarrete, Ó. Esteban, and N. Díaz-Herrera, “Plasmonic sensors based on doubly-deposited tapered optical fibers”, Sensors 14, 4791–4805 (2014).
  • 15. R. Jha, R.K. Verma, and B.D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a teflon layer between core and metal layer”, Plasmonics 3, 151–156 (2008).
  • 16. A.K. Sharma, R. Jha, and B.D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review”, IEEE Sensors J. 7, 1118–1129 (2007).
  • 17. M. Sumetsky, Y. Dulashko, J.M. Fini, A. Hale, and D.J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application”, J. Lightwave Technol. 24, 242–250 (2006).
  • 18. T.E. Dimmick, G. Kakarantzas, T. Birks, and P.S.J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers”, App. Opt. 38, 6845–6848 (1999).
  • 19. K. Sony and M. Soumya, “Preparation of tapered optical fibers to utilize the evanescent field for sensing applications”, Int. J. Engin. Trends and Technology 4, 442–446, (2011).
  • 20. H.J. Kbashi, “Fabrication of submicron-diameter and taper fibers using chemical etching”, J. Mater. Sci. Technol. 28, 308–312 (2012).
  • 21. T.A. Birks and Y.W. Li, “The shape of fibre tapers”, J. Lightwave Technol. 10, 432–438 (1992).
  • 22. I. Kaminow, “Optical fibre telecommunication”, Academic Press (2008).
  • 23. Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fibre sensor for label-free detection of biomolecules”, Sensors 11, 37810–3790 (2011).
  • 24. A. Leung, P.M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors”, Sensors and Actuators B 125, 688–703 (2007).
  • 25. L. Tong and M. Sumesky, “Subwavelength and nanometer diameter optical fibres”, Springer, 1–22, 2011.
  • 26. O. Katsunari, “Wave theory of optical waveguides, in fundamentals of optical waveguides”, Academic Press, London (2006).
  • 27. T.F. Morse and A.X. Mendez, “Specialty Optical Fibers Handbook”, Academic Press is an imprint of Elsevier, 19–45 (2007).
  • 28. J. Siuzdak, “Wstęp do współczesnej telekomunikacji światłowodowej”, Wydawnictwa Komunikacji i Łączności, 52–71 (1999). (IN POLISH)
  • 29. T.A. Birks, W.J. Wadsworth, and P.St.J. Russell, “Supercontinuum generation in tapered fibers”, Opt. Lett. 19, 1415–1417 (2000).
  • 30. G. Brambilla, “Optical fibre nanowires and microwires: a review”, J. Opt. 12 043001 (2010)
  • 31. A.K. Sharma, R. Jha, and B.D. Gupta, “Fiber-optic sensor based on surface plasmon resonance: a comprehensive review”, IEEE J. Sensors 7, 1118–1128 (2007).
  • 32. R.H. Kooymann, “Physics of Surface Plasmon, Handbook of Surface Plasmon Resonance”, RSC Publishing, 15–25 (2008).
  • 33. P.B. Johnson and R.W. Christy, “Optical constants of the noble metals”, Phys. Rev. B 6, 4370–4379 (1972).
  • 34. A.D. Rakić, A.B. Djurišic, J.M. Elazar, and M.L. Majewski, “Optical properties of metallic films for vertical-cavity opto-electronic devices”, Appl. Opt. 37, 5271–5283 (1998).
  • 35. P.B. Johnson and R.W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd”, Phys. Rev. B 9, 5056–5070 (1974).
  • 36. http://www.corning.com/WorkArea/showcontent.aspx?id= 63939 17. 04.2015r,
  • 37. Z. Hołdyński, M. Napierala, M. Szymański, M. Murawski, P. Mergo, P. Marć, L.R .Jaroszewicz, and T. Nasiłowski, “Experimental study of dispersion characteristics for a series of microstructured fibers for customized supercontinuum generation”, Opt. Express, 21 7107–7117 (2013).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ed6defa9-2cf2-4669-a669-e7566bf2ef46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.