Czasopismo
2012
|
Vol. 60, no 3
|
269--283
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The vector-valued T(1) theorem due to Figiel, and a certain square function estimate of Bourgain for translations of functions with a limited frequency spectrum, are two cornerstones of harmonic analysis in UMD spaces. In this paper, a simplified approach to these results is presented, exploiting Nazarov, Treil and Volberg's method of random dyadic cubes, which allows one to circumvent the most subtle parts of the original arguments.
Rocznik
Tom
Strony
269--283
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Department of Mathematics and Statistics University of Helsinki Gustaf Hallstromin katu 2b FI-00014 Helsinki, Finland , tuomas.hytonen@helsinki.fi
Bibliografia
- [1] J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, in: Probability Theory and Harmonic Analysis (Cleveland, OH, 1983), Monogr. Textbooks Pure Appl. Math. 98, Dekker, New York, 1986, 1-19.
- [2] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, IL, 1981), Vol. I, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, 270-286.
- [3] G. David and J.-L. Journé, A boundedness criterion for generalized Calderon-Zygmund operators, Ann. of Math. (2) 120 (1984), 371-397.
- [4] T. Figiel, On equivalence of some bases to the Haar system in spaces of vector-valued functions, Bull. Polish Acad. Sci. Math. 36 (1988), 119-131.
- [5] T. Figiel, Singular integral operators: a martingale approach, in: Geometry of Banach Spaces (Strobl, 1989), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, Cambridge, 1990, 95-110.
- [6] T. Figiel and P. Wojtaszczyk, Special bases in function spaces, in: Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001, 561-597.
- [7] S. Geiss, S. Montgomery-Smith and E. Saksman, On singular integral and martingale transforms, Trans. Amer. Math. Soc. 362 (2010), 553-575.
- [8] M. Girardi and L. Weis, Operator-valued Fourier multiplier theorems on Lp(X) and geometry of Banach spaces, J. Funct. Anal. 204 (2003), 320-354.
- [9] T. Hytönen, Aspects of probabilistic Littlewood-Paley theory in Banach spaces, in: Banach Spaces and Their Applications in Analysis, de Gruyter, Berlin, 2007, 343-355.
- [10] T. Hytönen, The sharp weighted bound for general Calderon-Zygmund operators, Ann. of Math. 175 (2012), 1473-1506.
- [11] T. Hytönen and P. Portal, Vector-valued multiparameter singular integrals and pseudodifferential operators, Adv. Math. 217 (2008), 519-536.
- [12] T. Hytönen and L. Weis, A T1 theorem for integral transformations with operatorvalued kernel, J. Reine Angew. Math. 599 (2006), 155-200.
- [13] T. R. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math. Soc. 285 (1984), 739-757.
- [14] F. Nazarov, S. Treil, and A. Volberg, Cauchy integral and Calderon-Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Notices 1997, 703-726.
- [15] F. Nazarov, S. Treil, and A. Volberg, The Tb-theorem on non-homogeneous spaces, Acta Math. 190 (2003), 151-239.
- [16] J. Parcet, Pseudo-localization of singular integrals and noncommutative Calderon-Zygmund theory, J. Funct. Anal. 256 (2009), 509-593.
- [17] N. Randrianantoanina, Non-commutative martingale transforms, J. Funct. Anal. 194 (2002), 181-212.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-ed17d428-1ab5-4c1d-817c-7a3e96f98c4a