Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 27, Iss. 1 | 99--107
Tytuł artykułu

Optical investigation of bovine grey and white matters in visible and near-infrared ranges

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Due to enormous interests for laser in medicine and biology, optical properties characterization of different tissue have be affecting in development processes. In addition, the optical properties of biological tissues could be influenced by storage methods. Thus, optical properties of bovine white and grey tissues preserved by formalin have been characterized over a wide wavelength spectrum varied between 440 nm and 1000 nm. Materials and Methods: To that end, a single integrating sphere system was assembled for spectroscopic characterization and an inverse adding-doubling algorithm was used to retrieve optical coefficients, i.e. reduced scattering and absorption coefficients. Results: White matter has shown a strong scattering property in comparison to grey matter. On the other hand, the grey matter has absorbed light extensively. In comparison, the reduced scattering profile for both tissue types turned out to be consistent with prior works that characterized optical coefficients in vivo. On the contrary, absorption coefficient behavior has a different feature. Conclusion: Formalin could change the tissue's optical properties because of the alteration of tissue's structure and components. The absence of hemoglobin that seeps out due to the use of a formalin could reduce the absorption coefficient over the visible range. Both the water replacement by formalin could reduce the refractive index of a stored tissue and the absence of hemoglobin that scatters light over the presented wavelength range should diminish the reduced scattering coefficients over that wavelength range.
Wydawca

Rocznik
Strony
99--107
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Biomedical Photonics Laboratory, Higher Institute for Laser Research and Applications, Damascus University, Damascus, Syria, ali.shahin88@yahoo.com
  • Physiology Department, Veterinary Faculty, Hama University, Hama, Syria
  • Biomedical Photonics Laboratory, Higher Institute for Laser Research and Applications, Damascus University, Damascus, Syria
  • Faculty of Informatics Engineering, Al-Sham Private University, Damascus, Syria
  • Biomedical Photonics Laboratory, Higher Institute for Laser Research and Applications, Damascus University, Damascus, Syria
  • Arab International University, Damascus, Syria
Bibliografia
  • 1. Eggert H R, Blazek V. Optical properties of human brain tissue, meninges and brain tumors in the spectral range of 200 to 900nm. eurosurgery. 1987;21 (4):459-464. https://doi.org/10.1227/00006123-198710000-00003
  • 2. Taddeucci A, Martelli F, Barilli M, Ferrari M, Zaccanti G. Optical properties of brain tissue. J Biomed Opt. 1996;1(1):117-123. https://doi.org/10.1117/12.227816
  • 3. Sandell J, Zhu T. A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics. 2011;4(11):773-787. https://doi.org/10.1002/jbio.201100062
  • 4. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37-R61. https://doi.org/10.1088/0031-9155/58/11/R37
  • 5. Holmer C, Lehmann K, Wanken J, et al. Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction. J Biomed Opt. 2007;12(1):014025-1-8. https://doi.org/10.1117/1.2564793
  • 6. Lin WC, Toms SA, Johnson M, Jansen ED, Mahadevan-Jansen A. In vivo brain tumor demarcation using optical spectroscopy. J Photochem Photobiol. 2001;73:396-402. https://doi.org/10.1562/0031-8655(2001)0730396IVBTDU2.0.CO2
  • 7. Mourant JR, Freyer JR, Hielscher AH, Eick AA, Shen D, Johnson TM. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Opt. 1998;37:3586-3593. https://doi.org/10.1364/ao.37.003586
  • 8. Salomatina EV, Jiang B, Novak J, Yaroslavsky A. Optical properties of normal and cancerous human skin in the visible and nearinfrared spectral range. J Biomed Opt. 2006;11(6):064026-1-9. https://doi.org/10.1117/1.2398928
  • 9. Honda N, Ishii K, Kajjmoto Y, Awazu K. Determination of optical properties of human brain tumor tissues from 350 to 1000nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid. J Biomed Opt. 2018;23(7):075006. https://doi.org/10.1117/1.JBO.23.7.075006
  • 10. Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C. In vivo local determination of tissue optical properties: applications to human brain. Appl Opt. 1999;38:4939-50. https://doi.org/10.1364/ao.38.004939
  • 11. Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier H-J. Optical properties of selected native and coagulated human brain tissue in vitro in the visible and near Infrared spectral range. Phys Med Biol. 2002;47:2059-2073. https://doi.org/10.1088/0031-9155/47/12/305
  • 12. Gebhart SC, Lin WC, Mahadevan-Jansen A. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys Med Biol. 2006;51:2011-2027. https://doi.org/10.1088/0031-9155/51/8/004
  • 13. Ozer K, Bozkulak O, Tabakoglu HO, Kurt A, Gulsoy M. Optical properties of native and coagulated lamb brain tissues in vitro in the visible and near-infrared spectral range. In: Jacques S, Roach WP, eds. Optical Interactions with Tissue and Cells XVII. Vol 6084. SPIE;2006:60840P-1-8. https://doi.org/10.1117/12.646077
  • 14. Azimipour M, Baumgartner R, Liu Y, Jacques SL, Eliceiri K, Pashaie R. Extraction of optical properties and prediction of light distribution in rat brain tissue. J Biomed Opt. 2014;19(7):075001-11. https://doi.org/10.1117/1.JBO.19.7.075001
  • 15. Wood MFG, Vurgun N, Wallenburg MA, Vitkin IA. Effects of formalin fixation on tissue optical polarization properties. Phys Med Biol. 2011;56(8):115-122. https://doi.org/10.1088/0031-9155/56/8/N01
  • 16. Aung H, De Angelo B, Soldano J, Kostyk P, Rodriguez B, Xu M. On alterations in the refractive index and scattering properties of biological tissue caused by histological processing. In: Wax AP, Beckman V, eds. Biomedical Applications of Light Scattering VII. Vol 8592. SPIE;2013:85920X-1-8. https://doi.org/10.1117/12.2005927
  • 17. Abe M, Takahashi M, Horiuchi K, Nagano A. The changes in crosslink contents in tissue after formalin fixation. Anal Biochem. 2003;318(1):118-123. https://doi.org/10.1016/S0003-2697(03)00194-5
  • 18. Hsiung P-L, Nambiar P, Fujimoto J. Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography. J Biomed Opt. 2005;10(6):064033. https://doi.org/10.1117/1.2147155
  • 19. Pitzschke A, Lovisa B, Seydoux O. et al. Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen and formalin-fixated conditions. J Biomed Opt. 2015:20(2):025006. https://doi.org/10.1117/1.JBO.20.2.025006
  • 20. Anand S, Cicchi R, Martelli F, et al. Effects of formalin fixation on tissue optical properties of in-vitro brain samples. In: Jansen D, ed. Optical Interactions with Tissue and Cells XXVI. Vol 9321. SPIE;2015:93210Z1-5. https://doi.org/10.1117/12.2076961
  • 21. Wilson BC, Patterson MS, Flock ST. Indirect versus direct techniques for the measurement of the optical properties of tissues. J Photochem Photobiol. 1987;46(55):601-608. https://doi.org/10.1111/j.1751-1097.1987.tb04820.x
  • 22. van der Zee P. Measurement and Modelling of the Optical Properties of Human Tissue in the Near Infrared. Ph.D. Dissertation, University of London, London, U.K., 1992.
  • 23. Prahl, S. Light Transport in Tissue. Ph.D. Dissertation, University Texas, Austin, U.S.A., 1988.
  • 24. Roysten D, Poston R, Prahl S. Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064nm. J Biomed Opt. 1996;1(1):110-116. https://doi.org/10.1117/12.227698
  • 25. Shahin A, Bachir W, Sayem El-Daher M. Polystyrene microsphere optical properties by Kubelka-Munk and diffusion approximation with a single integrating sphere system: a comparative study. J Spec. 2019:3406319. https://doi.org/10.1155/2019/3406319
  • 26. Prahl, S. Inverse Adding-Doubling XP version-3-9-5; School of Medicine, Oregon Health and Science University: Portland, 2018.
  • 27. van de Hulst HC. Light Scattering by Small Particles. New York: Dover publication; 1981.
  • 28. Ashoor HE, Jasim Kh E. Determining the optical properties of blood using He-Ne laser and double integrating sphere set-up. Polish J Med Phys Eng. 2019;25(1):1-5. https://doi.org/10.2478/pjmpe-2019-0001
  • 29. Friebel M, Roggan A, Muller G, Meinke M. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J Biomed Opt. 2006;11(3):034021. https://doi.org/10.1117/1.2203659
  • 30. Lovell AT, Hebden JC, Goldstone LC, Cope M. Determination of the transport scattering coefficient of red blood cells. In: Chance B, Alfano RR, Tromberg BJ, eds. Optical Tomography and Spectroscopy of Tissue III. Vol 3597. SPIE;1999:175-182. https://doi.org/10.1117/12.356795
  • 31. Sun Y, Fischer BM, Pickwell-MacPherson E. Effects of formalin fixing on the terahertz properties of biological tissues. J Biomed Opt. 2009;14(6):064017-1-7. https://doi.org/10.1117/1.3268439
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ecb1c1da-cd72-4f4e-b590-d13831731304
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.