Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 3 | 22--29
Tytuł artykułu

Influence of coefficient of friction on Ti-6Al-4V titanium alloy turning process - FEM analysis

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Ocena wpływu współczynnika tarcia na przebieg procesu toczenia stopu tytanu Ti-6Al-4V - analiza MES
Języki publikacji
EN
Abstrakty
EN
The good properties of Ti-6Al-4V titanium alloy make it widely used, but at the same time, make it difficult to machine. One of the factors which influence the machinability of metal alloys is coefficient of friction, which can be lowered by multiple cooling and lubricating methods. In the present work the influence of coefficient of friction on the turning process of Ti-6Al-4V was analyzed based on the FEM simulations conducted in DEFORM 2D/3D software. It was proven that the coefficient of friction influenced the cutting force and thrust force. It was also shown that the coefficient of friction had a significant impact on the chip compression ratio.
PL
Dobre właściwości stopu tytanu Ti-6Al-4V decydują o jego szerokim zastosowaniu, lecz jednocześnie wpływają na trudnoobrabialność. Jednym z czynników, który wpływa na obrabialność stopów metali jest współczynnik tarcia, którego wartość może być obniżana dzięki zastosowaniu różnych metod chłodzenia i smarowania. W niniejszej pracy przeanalizowano wpływ wartości współczynnika tarcia na przebieg procesu toczenia stopu Ti-6Al-4V, na podstawie symulacji MES przeprowadzonych w programie DEFRORM 2D/3D. Pokazano, iż współczynnik tarcia ma wpływ na wartość siły skrawania i siły odporowej. Uwidoczniono również istotny wpływ wartości współczynnika tarcia na współczynnik spęczenia wióra.
Wydawca

Rocznik
Tom
Strony
22--29
Opis fizyczny
Bibliogr. 40 poz., il. kolor., 1 fot., wykr.
Twórcy
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland, j.lisowicz@prz.edu.pl
Bibliografia
  • [1] Amrita M., Srikant R.R., Sitaramaraju A.V. 2014. “Performance evaluation of nanographite-based cutting fluid in machining process”. Mater. Manuf. Process. 29(5): 600- 605. DOI: 10.1080/10426914.2014.893060.
  • [2] Astakhov V.P. 2006. “Chapter 1 - Generalized model of chip formation”. In Tribology of Metal Cutting, 1-68.
  • [3] Astakhov V.P. 2006. “Chapter 3 - Tribology of the tool-chip and tool-workpiece interfaces”. In Tribology of Metal Cutting, 124-219.
  • [4] Bailey J.A. 1975. “Friction in metal machining-Mechanical aspects”. Wear 31(2): 243-275. DOI: 10.1016/0043-1648(75)90161-1.
  • [5] Bermingham M.J., Kirsch J., Sun S., Palanisamy S., Dargusch M.S. 2011. “New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V”. Int. J. Mach. Tools Manuf. 51(6): 500-511. DOI: 10.1016/j.ijmachtools.2011.02.009.
  • [6] Bermingham M.J., Sim W.M., Kent D., Gardiner S., Dargusch M.S. 2015. “Tool life and wear mechanisms in laser assisted milling Ti-6Al-4V”. Wear 322-323: 151-163. DOI: 10.1016/j.wear.2014.11.001.
  • [7] Blau P.J. 2001. “The significance and use of the friction coefficient”. Tribol. Int. 34(9): 585-591. DOI: 10.1016/S0301679X(01)00050-0.
  • [8] Cotterell M., Byrne G. 2008. “Characterisation of chip formation during orthogonal cutting of titanium alloy Ti-6Al-4V”. CIRP J. Manuf. Sci. Technol. 1(2): 81-85. DOI: 10.1016/j.cirpj.2008.09.017.
  • [9] Cotterell M., Byrne G. 2008. “Dynamics of chip formation during orthogonal cutting of titanium alloy Ti-6Al-4V”. CIRP Ann. - Manuf. Technol. 57(1): 93-96. DOI: 10.1016/j. cirp.2008.03.007.
  • [10] Debnath S., Reddy M.M., Yi Q.S. 2014. “Environmental friendly cutting fluids and cooling techniques in machining: A review”. J. Clean. Prod. 83: 33-47. DOI: 10.1016/j.jclepro. 2014.07.071.
  • [11] Deiab I., Raza S.W., Pervaiz S. 2014. “Analysis of lubrication strategies for sustainable machining during turning of titanium ti-6al-4v alloy”. Procedia CIRP 17: 766-771. DOI: 10.1016/j.procir.2014.01.112.
  • [12] Egaña A., Rech J., Arrazola P.J. 2012. “Characterization of Friction and Heat Partition Coefficients during Machining of a TiAl6V4 Titanium Alloy and a Cemented Carbide”. Tribol. Trans. 55(5): 665-676. DOI: 10.1080/10402004.2012.692007.
  • [13] Ezugwu E.O., Bonney J., Yamane Y. 2003. “An overview of the machinability of aeroengine alloys”. J. Mater. Process. Technol. 134(2): 233-253. DOI: 10.1016/S09240136(02)01042-7.
  • [14] Gajrani K.K., Ram D., Ravi Sankar M. 2017. “Biodegradation and hard machining performance comparison of eco-friendly cutting fluid and mineral oil using flood cooling and minimum quantity cutting fluid techniques”. J. Clean. Prod. 165: 1420-1435. DOI: 10.1016/j.jclepro.2017.07.217.
  • [15] Habrat W. 2019. Analiza i modelowanie toczenia wykończeniowego tytanu i jego stopów. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej.
  • [16] Hong S. 2006. “Lubrication mechanisms of LN2 in ecological cryogenic machining”. Mach. Sci. Technol. 10(1): 133-155. DOI: 10.1080/10910340500534324.
  • [17] Hong S.Y., Ding Y., Jeong W. cheol. 2001. “Friction and cutting forces in cryogenic machining of Ti-6Al-4V”. Int. J. Mach. Tools Manuf. 41(15): 2271-2285. DOI: 10.1016/ S0890-6955(01)00029-3.
  • [18] Jamil M. et al. 2019. “Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti-6Al-4V,” Int. J. Adv. Manuf. Technol. 102(9-12): 3895-3909. DOI: 10.1007/s00170-019-03485-9.
  • [19] Khan A., Maity K. 2018. “Influence of cutting speed and cooling method on the machinability of commercially pure titanium (CP-Ti) grade II”. J. Manuf. Process. 31: 650-661. DOI: 10.1016/j.jmapro.2017.12.021.
  • [20] Lawal S.A., Choudhury I.A., Nukman Y. 2012. “Application of vegetable oil-based metalworking fluids in machining ferrous metals - A review”. Int. J. Mach. Tools Manuf. 52(1): 1-12. DOI: 10.1016/j.ijmachtools.2011.09.003.
  • [21] Niu Q.L., Zheng X.H., Ming W.W., Chen M. 2013. “Friction and Wear Performance of Titanium Alloys against Tungsten Carbide under Dry Sliding and Water Lubrication”. Tribol. Trans. 56(1): 101-108. DOI: 10.1080/10402004.2012.729296.
  • [22] Oczoś K., Kawalec A. 2012. Kształtowanie metali lekkich. Warszawa: Wydawnictwo Naukowe PWN.
  • [23] Persson B.N.J. 1993. “Theory of friction and boundary lubrication B.” Phys. Rev. B 48(24).
  • [24] Peters M., Hemptenmacher J., Kumpfert J., Leyens C. 2003. “Structure and Properties of Titanium and Titanium Alloys”. In Titanium and Titanium Alloys (M. Peters and C. Leyens, Eds.), 1-36. Weinheim: WILEY-VCH Verlag GmbH.
  • [25] Rahim E.A., Sasahara H. 2011. “A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys”. Tribol. Int. 44(3): 309-317. DOI: 10.1016/j.triboint. 2010.10.032.
  • [26] Rahman M., Wong Y.S., Zareena A.R. 2003. “Machinability of titanium alloys”. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing 46(1): 107-115. DOI: 10.1299/jsmec.46.107.
  • [27] Ramana M.V., Rao G.K.M., Rao D.H. 2013. “Effect of Process Parameters on Surface Roughness in Turning of Titanium Alloy under Different Conditions of Lubrication, 83-91”. Conf. Proc. Recent Adv. Robot. Aeronaut. Mech. Eng. held Athens, Greece, May 14-16.
  • [28] Raza S.W., Pervaiz S., Deiab I. 2014. “Tool wear patterns when turning of titanium alloy using sustainable lubrication strategies”. Int. J. Precis. Eng. Manuf. 15(9): 1979-1985. DOI: 10.1007/s12541-014-0554-z.
  • [29] Ribeiro M.V., Moreira M.R.V., Ferreira J.R. 2003. “Optimization of titanium alloy (6Al-4V) machining”. J. Mater. Process. Technol. 143-144(1): 458-463. DOI: 10.1016/S09240136(03)00457-6.
  • [30] Saka N. 2015. “On the Laws and Theories of Sliding Friction”. International Mechanical Engineering Conference & Exposition, November 13-19, Houston, Texas, USA. DOI: 10.1115/imece2015-51470.
  • [31] Shokrani A., Dhokia V., Newman S.T. 2016. “Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy”. J. Manuf. Process. 21:172-179. DOI: 10.1016/j.jmapro.2015.12.002.
  • [32] Talib N., Rahim E.A. 2016. “The Effect of Tribology Behavior on Machining Performances When Using Bio-based Lubricant as a Sustainable Metalworking Fluid”. Procedia CIRP 40: 504-508. DOI: 10.1016/j.procir.2016.01.116.
  • [33] Trent E.M., Wright P.K. 2000. Machinability. In Metal Cutting, 4th ed., 251-310. Butterworth-Heinemann.
  • [34] Veiga C., Davim J.P., Loureiro A.J.R. 2013. “Review on machinability of titanium alloys: The process perspective”. Rev. Adv. Mater. Sci. 34(2): 148-164.
  • [35] Xuedong W., Dapu W., Shengrong Y., Qunji X. 2000. “Tribochemical investigation of tungsten carbide/titanium alloy tribo-couples under aqueous lubrication”. Wear 237(1): 28-32. DOI: 10.1016/S0043-1648(99)00288-4.
  • [36] Yang Y., Zhang C., Dai Y., Luo J. 2017. “Tribological properties of titanium alloys under lubrication of SEE oil and aqueous solutions”. Tribol. Int. 109(November 2016): 40-47. DOI: 10.1016/j.triboint.2016.11.040.
  • [37] Yang Y., Zhang C., Dai Y., Luo J. 2019. “Lubricity and Adsorption of Castor Oil Sulfated Sodium Salt Emulsion Solution on Titanium Alloy”. Tribol. Lett. 67(2): 1-14. DOI: 10.1007/s11249-019-1173-8.
  • [38] Yang Y., Zhang C., Wang Y., Dai Y., Luo J. 2016. “Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester”. Tribol. Int. 95: 27-34. DOI: 10.1016/j.triboint.2015.10.031.
  • [39] Zhang Y., Umbrello D., Mabrouki T., Rizzuti S., Nelias D., Gong Y. 2013. “On different FE-based models to simulate cutting operation of Titanium alloy (Ti-6Al-4V)”. Mechanika 19(3): 349-357. DOI: 10.5755/j01.mech.19.3.4656.
  • [40] Zhang Y.C., Mabrouki T., Nelias D., Gong Y.D. 2011. “Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach”. Finite Elem. Anal. Des. 47(7): 850-863. DOI: 10.1016/j.finel.2011.02.016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ec8c8422-c6f0-4038-aae2-2eed4e0859e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.