Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 5 | 48--55
Tytuł artykułu

Microstructure and Mechanical Properties of AISI 1106 /AISI 1045 Steels Drawn Arc Stud Welded Joints

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Arc stud welding process was used to join a fully threaded low carbon steel AISI 1106 stud to medium carbon steel AISI 1045 plate, the effects of welding current 200, 400 A and the welding time 0.1 to 0.6 step 0.1 s on the microstructure and mechanical properties were investigated, additional parameters of adding 0.1, 1 g SiC powder and applying nano carbon layer to the welding area also included. The results demonstrate that the preferred stud welding process parameters for this system was 400 A with 0.4 s welding current and time, respectively, which has a maximum tensile strength of 583 MPa. The joints fabricated with ash and nano carbon coated at preferred welding parameters showed a slight reduction in tensile strength. The fracture of the tensile test specimen consists of three failure modes including of interface fracture between stud and plate surface due to incomplete melting at low processing parameter, pullout fracture which is featured by a hole in the plate surface and fracture at the stud shank instead of the weldment interface or heat affected zone. The microstructure of the stud and plate are characterized by equiaxed grain of ferrite and pearlite with small amount of ferrite, respectively. The fusion zone consists of fine grain of ferrite and perlite. The hardness of the fusion zone was recording 132 HV which it slightly higher than the stud hardness 128 HV and lower than that of plate of 164 HV.
Wydawca

Rocznik
Strony
48--55
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
  • Department of Mechanical Engineering, Collage of Engineering, Al-Nahrain University, Al Jadriyah Bridge,64074 Baghdad, Iraq, dr.alialhelli@gmail.com
Bibliografia
  • 1. Chambers, H.A. 2001. Principles and practices of stud welding. Pci Journal, 46(5), pp. 46–59.
  • 2. Samardžić, I., Kolumbić, Z. and Klarić, Š. 2009. Welding parameter monitoring during stud arc welding. Pollack Periodica, 4(1), pp. 29–39. https:// doi.org/10.1556/pollack.4.2009.1.4
  • 3. Abass, M.H., Abood, A.N., Alali, M., Hussein, S.K. and Nawi, S.A. 2021. Mechanical Properties And Microstructure Evolution in Arc Stud Welding Joints of AISI 1020 with AISI 316L and AISI 304. Metallography, Microstructure, and Analysis, 10(3), 321– 333. https://doi.org/10.1007/s13632-021-00744-8
  • 4. Magda, A., Burca, M. and Lego, M. 2018, September. Research regarding capacitor discharge stud welding with tip ignition on galvanized thin sheets. In: IOP Conference Series: Materials Science and Engineering, 416, 1, #012015. DOI 10.1088/1757-899X/416/1/012015
  • 5. Behrens, B.A., Gruß, D. and Jenicek, A. 2011. Stud welding within sheet metal working tools. Production Engineering, 5(3), pp. 283–292. https://doi. org/10.1007/s11740-011-0304-3
  • 6. Brätz, O. and Henkel, K.M. 2019. Investigation of diffusible hydrogen content in drawn arc stud weld metal. Welding in the World, 63(4), pp. 957–965. https://doi.org/10.1007/s40194-019-00730-3
  • 7. Hildebrand, J. and Soltanzadeh, H. 2014. A review on assessment of fatigue strength in welded studs. International Journal of Steel Structures, 14(2), pp. 421–438. https://doi.org/10.1007/ s13296-014-2020-2
  • 8. Nishikawa, W.A.I.C.H.I. 2003. The principle and application field of stud welding. Welding internaional, 17(9), pp .699–705. https://doi.org/10.1533/ wint.2003.3170
  • 9. Hartz-Behrend, K., Marqués, J.L., Forster, G., Jenicek, A., Müller, M., Cramer, H., Jilg, A., Soyer, H. and Schein, J. 2014, November. Stud arc welding in a magnetic field–Investigation of the influences on the arc motion. In: Journal of Physics: Conference Series, 550, 1, #012003. https://iopscience.iop.org/ article/10.1088/1742-6596/550/1/012003/meta
  • 10. Klaric, S., Kladaric, I., Kozak, D., Stoic, A., Ivandic, Z. and Samardzic, I. 2009. The influence of the stud arc welding process parameters on the weld penetration. Scientific Bulletin Series C: Fascicle Mechanics, Tribology, Machine Manufacturing Technology, 23, p. 79.
  • 11. Yilmaz, N.F. and Hamza, A.A. 2014. Effect of proces parameters on mechanical and microstructural properties of arc stud welds. Materials Testing, 56(10), pp. 806–811. https://doi.org/10.3139/120.110629
  • 12. Hsu, C. and Mumaw, J. 2011. Weldability of advanced high-strength steel drawn arc stud welding. Welding journal, 90, pp. 45–53.
  • 13. Zhang, Q., Zhang, B., Luo, Y., Yang, G. and Zheng, H.X. 2022. Effect of the Welding Process on Microstructure, Microhardness, and Residual Stresses of Capacitor Discharge Stud Welded Joint. Journal of Manufacturing Science and Engineering, 144(1). https://doi.org/10.1115/1.4051533
  • 14. Singh, D.K., Sahoo, G., Basu, R., Sharma, V. and Mohtadi-Bonab, M.A. 2018. Investigation on the microstructure – mechanical property correlation in dissimilar steel welds of stainless steel SS 304 and medium carbon steel EN 8. Journal of Manufacturing Processes, 36, pp. 281–292. https://doi. org/10.1016/j.jmapro.2018.10.018
  • 15. Jafarzadegan, M., Feng, A.H., Abdollah-Zadeh, A., Saeid, T., Shen, J. and Assadi, H. 2012. Microstructural characterization in dissimilar friction stir weld- ing between 304 stainless steel and st37 steel. Materials Characterization, 74, pp. 28–41. https://doi. org/10.1016/j.matchar.2012.09.004
  • 16. Abbas, E.N., Omran, S., Alali, M., Abass, M.H. and Abood, A.N. 2018, October. Dissimilar welding of AISI 309 stainless steel to AISI 1020 carbon steel using arc stud welding. In: International Conference on Advanced Science and Engineering, pp. 462–467. https://doi.org/10.1109/ICOASE.2018.8548844
  • 17. Başyiğit, A.B. and Kurt, A. 2017. Investigation of the weld properties of dissimilar S32205 duplex stainless steel with AISI 304 steel joints produced by arc stud welding. Metals, 7(3), p. 77. https://doi. org/10.3390/met7030077
  • 18. Buranapunviwat, K. and Sojiphan, K. 2021. Destructive testing and hardness measurement of resistance stud welded joints of ASTM A36 steel. Materials Today: Proceedings, 47, pp.3 565–3569. https://doi. org/10.1016/j.matpr.2021.03.562
  • 19. Lin, Y.C., Chen, H.M. and Chen, Y.C. 2013. Analysis of microstructure and wear performance of SiC clad layer on SKD61 die steel after gas tungsten arcwelding. Materials and Design, 47, pp. 828–835. https://doi.org/10.1016/j.matdes.2013.01.007
  • 20. Moradi, M.M., Jamshidi Aval, H. and Jamaati, R. 2018. Microstructure and mechanical properties in nano and microscale SiC-included dissimilar friction stir welding of AA6061-AA2024. Materials Science and Technology, 34(4), pp. 388–401. https://doi.org/10.1080/02670836.2017.1393976
  • 21. Xie, X., Shen, J., Cheng, L., Li, Y. and Pu, Y. 2015. Effects of nano-particles strengthening activat- ing flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints. Materials & Design, 81, pp. 31–38. https:// doi.org/10.1016/j.matdes.2015.05.024
  • 22. ISO 14555, (2006). In Welding-Arc Stud Welding of Metallic Materials, 2nd ed. Geneva, Switzerland.
  • 23. Firas H. Hameed, et al. Dissimilar arc stud welding AISI 304/ AISI 1008: Mechanical properties. In: IOP Conf. Series: Materials Science and Engineering 1076 (2021) 012079. https://iopscience.iop.org/ article/10.1088/1757-899X/1076/1/012079/meta
  • 24. Algodi, Samer J., et al. Modelling and characterisation of electrical discharge TiC-Fe cermet coatngs. Procedia CIRP 68 (2018): 28–33. https://doi. org/10.1016/j.procir.2017.12.017
  • 25. Shin, Dong Hyuk, et al. Microstructural evolution in a commercial low carbon steel by equal channel angular pressing. Acta Materialia 48.9 (2000): 2247–2255. https://doi.org/10.1016/S1359-6454(00)00028-8
  • 26. Ma, H., Qin, G., Geng, P., Li, F., Fu, B. and Meng, X. 2015. Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding. Materials & Design, 86, pp. 587– 597. https://doi.org/10.1016/j.matdes.2015.07.068
  • 27. Khan, M., Dewan, M.W. and Sarkar, M.Z. 2021. Effects of welding technique, filler metal and posteld heat treatment on stainless steel and mild steel dissimilar welding joint. Journal of Manufacuring Processes, 64, pp. 1307-1321. https://doi. org/10.1016/j.jmapro.2021.02.058
  • 28. Kuroiwa, Ryosuke, et al. 2019. Microstructure control of medium carbon steel joints by low-temperature linear friction welding. Science and Technology of Welding and Joining. https://doi.org/10.1080/13 621718.2019.1600771
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ec73b42b-2db4-4080-8b1c-4020a8a41c0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.