Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 63, nr 3 | 320--332
Tytuł artykułu

Biomass Production of Different Grassland Communities under Artificially Modified Amount of Rainfall

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global climate change is predicted to alter growing season rainfall patterns, potentially reducing total amounts of growing season precipitation and redistributing rainfall into fewer but larger individual events. Such changes may affect numerous soil, plant, and ecosystem properties in grasslands and ultimately impact their productivity and biological diversity. A five-year field study with regulated amount of precipitation was executed in different types of temperate grasslands (dry Festuca, wet Cirsium and Nardus grasslands) in three different regions (in lowland, highland and mountain, respectively) in the Czech Republic. Three simulated rainfall treatments were applied: reduced rainfall by 50% (dry), increased rainfall by 50% (wet), and natural rainfall of the current growing season (ambient). The addition of supplemental resources of water exhibited slightly positive relation with the above-ground production (AP), but statistically significant only in the lowland grassland. At all grasslands, both root biomass (RB) and total below-ground biomass (TBB) were significantly higher in wet compared to dry treatments. Significantly increased values of the TBB/AP ratios occurred only in the highland grassland due to enhanced rainfall. The opposite relations were found in lowland grassland where the TBB/AP ratio decreased in response to enhanced rainfall, though not significantly. In the mountain grassland, values of the TBB/AP ratios have shown less variability. The highland wet Cirsium grassland was more sensitive to altered rainfall regimes forming rather lower proportion of below-ground plant production.
Wydawca

Rocznik
Strony
320--332
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-603 00 Brno, Czech Republic, holub.p@czechglobe.cz
autor
  • Mendel University in Brno, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Zemědělská 1, CZ-613 00 Brno, Czech Republic
autor
  • Mendel University in Brno, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Zemědělská 1, CZ-613 00 Brno, Czech Republic
autor
  • Institute of Botany, Academy of Sciences of the Czech Republic, Department of Vegetation Ecology, Lidická 25, CZ-602 00 Brno, Czech Republic
Bibliografia
  • 1. Andrzejewska L. 1991 — Root production of some grass communities on peat soil in river valleys of Biebrza and Narew — Pol. Ecol. Stud. 17:63–72.
  • 2. Arriaga L., Maya Y. 2007 — Spatial variability in decomposition rates in a desert scrub of Northwestern Mexico — Plant. Ecol. 189: 213–225.
  • 3. Bakker M.R., Augusto L., Achat D.L. 2006 — Fine root distribution of trees and understory in mature stands of marine pine (Pinus pinaster) on dry and humid sites — Plant Soil, 286: 37–51.
  • 4. Beier C., Rasmussen L. 1994 — Effects of whole-ecosystem manipulations on ecosystem internal- processes — Trends Ecol. Evol. 9: 218–223.
  • 5. Beier C., Beierkuhnlein C., Wohlgemuth T. et al. 2012 — Precipitation manipulation experiments — challenges and recommendations for the future — Ecol. Lett. 15: 899–911.
  • 6. Cook B.I., Ault T.R., Smerdon J.E. 2015 — Unprecedented 21st-century drought risk in the American Southwest and Central Plains — Sci. Adv., 1, no. 1, e1400082, doi:10.1126/ sciadv.1400082.
  • 7. Dai A. 2011 — Drought under global warming: a review — WIREs Clim. Change, 2: 45–65.
  • 8. Fay P.A., Kaufman D.M., Nippert J.B., Carlisle J.D., Harper C.W. 2008 —Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change — Global Change Biol. 14:1600–1608.
  • 9. Fiala K. 2010 — Belowground plant biomass of grassland ecosystems and its variation according to ecological factors — Ekol. Bratislava, 29:182–206.
  • 10. Fiala K., Tüma I., Holub P. 2009 — Effect of manipulated rainfall on root production and plant belowground dry mass of different grassland ecosystems — Ecosystems, 12: 906–914.
  • 11. Fiala K., Tüma I., Holub P. 2012 — Interannual variation in root production in grasslands affected by artificially modified amount of rainfall— Sci. World J., ID 805298, 10 pages.
  • 12. Fiala K., Tůma I., Holub P. 2014 — Proportion of root production in several temperate grasslands of Central Europe — Ekol. Bratislava, 33:232–241.
  • 13. Fischer Z., Niewinna M., Yasulbutaeva I. 2006 — Intensity of organic matter decomposition in various landscapes of Caucasus (Daghestan) —Pol. J. Ecol. 54: 105–116.
  • 14. Frank D.A. 2007 — Drought effect on above- and belowground production of a grazed temperate grassland ecosystem — Oecologia, 152: 131–139.
  • 15. Gill R.A., Jackson R.B. 2000 — Global patterns of root turnover for terrestrial ecosystems — New Phytol. 147: 13–31.
  • 16. Gill R.A., Parton R.H., Day W.J. et al. 2002 — Using simple environmental variables to estimate belowground productivity in grasslands — Global Ecol. Biogeogr. 11: 79–86.
  • 17. Harrach T., Kunzmann G. 1983 — Wurzelverteilung von Gründlandgesselschaften in vershieden Böden untershiedlichen ökologischen Feuchtengrades (In: Root ecology and its practical application, Eds: W. Böhm, L. Kutschera, L. Lichtenegger) — Int. Symp.Gumpenstein, Irdning, pp. 335–342.
  • 18. Hayes D.C., Seastedt T.R. 1987 — Root dynamics of tallgrass prairie in wet and dry years — Can. J. Bot. 65: 787–791.
  • 19. Holub P., Fabšičová M., Tůma I., Záhora J., Fiala K. 2013 — Effects of artificially varying amounts of rainfall on two semi-natural grassland types— J. Veg. Sci. 24: 518–529.
  • 20. Hui D., Jackson R.B. 2006 — Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data —New Phytol. 169: 58–93.
  • 21. Ibrahim L., Proe M.F., Cameron A.D. 1997 — Main effects of nitrogen supply and drought stress upon whole-plant carbon allocation in poplar —Can J. Forest Res. 27: 1413–1419.
  • 22. Knapp A.K., Fay P.A., Blair J.M., Collins S.L., Smith M.D., Carlisle J.D., Harper C.W., Danner B.T., Lett M.S., McCarron J.K. 2002 — Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland— Science, 298: 2202–2205.
  • 23. Köchy M., Wilson S.D. 2004 — Semiarid grassland responses to short-term variation in water availability — Plant Ecol. 17: 197–203.
  • 24. Kreyling J., Wenigmann M., Beierkuhnlein C., Jentsch A. 2008 — Effect of extreme weather events on plant productivity and tissue dieback are modified by community composition — Ecosystems, 11: 752–763.
  • 25. Milchunas D.G. 2009 — Estimating root production: Comparison of 11 methods in shortgrass steppe and review of biases — Ecosystems, 12:1381–1402.
  • 26. Ni J. 2004 — Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China — Plant Ecol. 174:217–234.
  • 27. Qaderi M.M., Kurepin L.V., Reid D.M. 2006 — Growth and physiological responses of canola (Brassica napus) to three components of global climate changes: Temperature, carbon dioxide and drought — Physiol. Plantarum, 128: 710–721.
  • 28. Risch A.C., Jurgensen M.F., Frank D.A. 2007 — Effects of grazing and soil micro-climate on decomposition rates in a spatio-temporally heterogeneous grassland — Plant Soil, 10:191–201.
  • 29. Rodrigues M.L., Pacheco C.M.A., Chaves M.M. 1995 — Soil-plant water relation, root distribution and biomass partitioning in Lupinus albus L. —J. Exp. Bot. 48: 947–959.
  • 30. Schläpfer B., Ryser P. 1996 — Leaf and turnover of three ecological contrasting grass species in relation to their performance along a productivity gradient — Oikos, 75: 398–406.
  • 31. Sims P.L., Singh J.S. 1978 — The structure and function of ten western north American grasslands. II. Intra-seasonal dynamics in primary producers compartments — J. Ecol. 66: 547–572.
  • 32. Teklay T. 2007 — Decomposition and nutrient release from pruning residues of two indigenous agroforestry species during the wet and dry seasons — Nutr. Cycl. Agroecosys. 77: 115–126.
  • 33. Titlyanova A.A., Romanova I.P., Kosykh N.P., Mironycheva-Tokareva N.P. 1999 — Pattern and process in above-ground and below-ground components of grassland ecosystems — J. Veg. Sci. 10: 307–320.
  • 34. Trenberth K.E., Dai A., Rasmussen R.M., Parsons D.B. 2003 — The changing character of precipitation — B. Am. Meteorol. Soc. 84:1205–1219.
  • 35. Tůma I. 2002 — Release of nutrients from decomposing litter on deforested areas affected by air pollution in the Beskydy Mts. — Ekol. Bratislava, 21: 201–220.
  • 36. Tůma I., Fiala K., Holub P., Záhora J. 2009 — Can soil properties in different grasslands be altered after three years of experimentally manipulated rain? — Beskydy, 2: 71–76.
  • 37. van Oorschot M., van Gaalen N., Maltby E., Mockler N., Spink A., Verhoeven J.T.A. 2000 — Experimental manipulation of water levels in two French reverine grassland soils — Acta Oecol. 21: 49–62.
  • 38. Walter J., Nagy L., Hein R., Rascher U., Beierkuhnlein C., Willner E., Jentsch A. 2011 — Do plants remember drought? Hints towards a drought-memory in grasses — Environ. Exp. Bot. 71: 34–40.
  • 39. Weißhuhn K., Auge H., Prati D. 2010 — Geographic variation in the response to drought I nine grassland species — Basic Appl. Ecol. 12:21–28.
  • 40. Werger M.J.A. 1983 — Wurzel/Spross — Verhältnis als Merkmal der Pflanzenstrategie (In: Wurzelökolodie und ihre Nutzanwendung, Eds: W. Böhm, L. Kutschera, L. Lichtenegger) — Int. Symp. Gumpenstein,Irdning, pp. 323–334.
  • 41. Xu X., Niu S., Sherry R.A., Zhou X., Zhou J. 2012 — Interannual variability in responses of below-ground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tallgrass prairie — Global Change Biol. 18: 1648–1656.
  • 42. Yahdjian L., Sala O.E. 2002 — A rainout shelter design for intercepting different amounts of rainfall — Oecologia, 133: 95–101.
  • 43. Yahdjian L., Sala O.E. 2006 — Vegetation structure constrains primary production response to water availability in the Patagonian steppe —Ecology, 87: 952–962.
  • 44. Yang X., Wang M.X., Huang Y., Wang Y. 2002 — A one-compartment model to study soil carbon decomposition rate at equilibrium situation —Ecol. Model. 151: 63–73.
  • 45. Zavalloni C., Gielen B., Lemmens C.M.H.M., De Boeck H.J., Blasi S., Van den Bergh S., Nijs I., Ceulemans R. 2008 — Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought — Plant Soil, 308: 119–130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec014ec1-666c-4d57-99e1-167cfc667b98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.